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Abstract:  

Structural control over design and formation of self-assembled nanomaterials for neuroprotection and neuroregeneration is 
crucial for their application in nanomedicine. Here a synthetic construct of the pituitary adenylate cyclase-activating 
polypeptide (PACAP38) coupled to a docosahexaenoic acid (DHA: an ω-3 polyunsaturated fatty acid (PUFA)) is designed 
towards the creation of compartmentalized liquid crystalline assemblies of neuroprotective compounds. The hormone 
PACAP38 is a ligand of the class B PAC1 G-protein-coupled receptor (GPCR), whereas DHA is a lipid trophic factor. The 
lipidated peptide PACAP-DHA is co-assembled into hierarchical nanostructures elaborated from hybrid vesicle-micelle 
reservoirs as well into PEGylated cubosomes composed of multiple neuroprotective building blocks. The resulting 
nanostructures are determined by synchrotron small-angle X-ray scattering (BioSAXS) and cryogenic transmission electron 
microscopy (cryo-TEM). Multicompartment topologies are obtained in a two-fold approach: (i) intriguing compartmentalized 
vesicles, which embed pep-lipid micelles forming nanopatterns, and (ii) multidomain pep-lipid cubosomes. Both kinds of 
topologies are favorable for sustained-release applications in combination therapies of neurodegeneration. The organizational 
complexity of the scaffolds involving the lipidated high-molecular weight peptide hormone is beyond the one that has been 
reached with small lipid-like peptide surfactants. 
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1. Supplementary content about the choice of the neuroprotective compounds DHA and PACAP 

in relation to their important biological functions  

 

 

Deficiency of docosahexaenoic acid (DHA) leads to severe pathologies because this ω-3 polyunsaturated 

fatty acid compound is essential for the maintenance of the retinal, neuronal and cardiovascular functions as well 

as for the brain development.[1-11] DHA is a lipid trophic factor, which may activate signaling pathways analogous 

to those triggered by peptidic trophic factors.[3,4] The anti-apoptotic effect of DHA through the ERK/MAPK 

signaling pathway has been associated with the regulation of Bcl-2 and Bax protein expression, the preservation 

of the mitochondrial membrane potential, and the inhibition of caspase activation.[11]  

Regarding the therapeutic benefits of DHA, biochemical evidence has established the DHA-mediated inhibition 

of Aβ-amyloid fibril deposits in brain.[7-9] Using multiple mechanisms, DHA may modulate the degradation 

pathways and the clearance of α-synuclein in degenerated neurons. These facts are of chief significance for 

prospective anti-AD and anti-PD therapies.[1,2,6]  

The molecular mechanism, by which DHA exerts its biological activity, involves its influence on the eicosanoid 

signaling pathways, regulation of genes expression in obesity and inflammatory responses, ligand stimulation of 

oligomeric intracellular signaling complexes (“signalosomes”), inflammatory cell signaling and Toll-like receptor 

signaling complexes, cellular stress responses and modifications of the lipid membranes organization.[11-25] In 

addition, C22:6 polyunsaturated lipids (PUFA) constitute an important fraction of the retinal cell membranes, 

which are responsible for vision.[11] Among other biological functions, DHA is a ligand of the retinoid X receptor.[10] 

The fact that DHA is a ligand of the retinoid X receptor in brain has received considerable attention in the 

therapeutic strategies requiring ligand activation of transcription factor proteins.[10]  

In living cells, PUFA regulate the dynamic oligomerization of transmembrane receptor proteins and the 

membrane domain stability.[12-25] In particular, DHA influences the oligomerization kinetics of the adenosine A2A 

and the dopamine D2 receptors by increasing the lateral diffusion rates in the lipid bilayers.[12] Moreover, this 

PUFA lipid modifies the in-plane organization of cell surface-expressed membrane proteins such as the major 

histocompatibility complex (MHC) class I.[16] 

On the other hand, the neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) has been 

shown to attenuate the Aβ-amyloid (1–42)-induced toxicity.[26-30] Neurotransmitter, neuromodulator, and 

endocrine-paracrine regulation are representative biological functions of PACAP in various cell types.[27-48] The 
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pleiotropic activities of this peptide involve its effects on the adrenal gland and the cardiovascular, respiratory, 

and immune systems.[26,27] The PAC1 membrane receptor of PACAP belongs to the class B G-protein-coupled 

receptors (GPCR) and plays an essential role in neuronal survival.[41-48] The mechanism of receptor activation by 

the large PACAP ligand presents strong scientific interest.[32-35] A two-domain model has been proposed, in which 

the central and C-terminal helical segments of the polypeptide bind to the N-terminal domain of the membrane 

receptor PAC1.[35] The interaction of the disordered N-terminal region of PACAP with the membrane receptor 

stimulates the PAC1 intracellular signaling. The importance of the helical conformation of PACAP for the ligand 

binding to the PAC1 receptor protein has been suggested.[35]  

As a 38-amino acid peptide, PACAP stimulates the cAMP formation in pituitary cells through its hormone 

activity.[36] PACAP has been reported to increase the levels of the anti-apoptotic proteins p-Akt, p-ERK1, p-ERK2, 

PKC, and Bcl-2.[28] This leads to diminished levels of activated caspases and in a decreased phorphorylation of 

the pro-apoptotic protein p38MAPK.[28] Therefore, this peptide appears to be a neurotrophic factor.[36-39,42,44] It is 

protective in retinal pathologies and contributes to retinal regeneration by attenuating the apoptosis of the retinal 

neurons.[27]  

Both DHA and PACAP may cross the blood-brain barrier (BBB) to exert their effects. However, they are 

especially deficient under pathological and stress conditions.  

Because of the deficiency of PACAP and DHA under neurodegenerative conditions, these compounds need 

to be delivered by suitable safe carriers to the central nervous system (CNS) towards an improved therapeutic 

outcome.  

 

 



SUPPORTING INFORMATION          

5 

 

 

2. Supporting figures   

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Synchrotron small-angle X-ray scattering (SAXS) pattern of a VPGS-PEG1000 micellar 

solution (3 mM concentration) at room temperature.  
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Figure S2. SAXS patterns of self-assembled bulk MO/Vitamin E and dispersed MO/Vitamin E/VPGS-

PEG1000 mixtures showing the formation of an inverted hexagonal liquid crystalline lipid phase and 

hexosome particles at room temperature. 
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