

Supporting Information

A Supramolecular Crosslinker to Give Salt-Resistant Polyion Complex Micelles and Improved MRI Contrast Agents

Jiahua Wang, Junyou Wang,* Peng Ding, Wenjuan Zhou, Yuehua Li, Markus Drechsler, Xuhong Guo,* and Martien A. Cohen Stuart*

anie_201805707_sm_miscellaneous_information.pdf

SUPPORTING INFORMATION

Table of Contents

1. Material and Characterizations

2.	Synthesis and characterization of DPA-based tris-ligand	(Scheme SI 1, Figure SI 1-SI 2)
3.	Angular dependent light scattering results of $Mn-L_2$ and $Mn-L_3$ micelles.	(Figure SI 3)
4.	Light scattering results of $Mn-L_2-L_3$ micelles (0% - 100% L_3) at different salt co	oncentration (Figure SI 4-SI 9)
5.	Relaxivity of Mn-L ₂ and Mn-L ₃ micelles	(Figure SI 10)
6.	Size, salt response and relaxivity of Fe-L ₂ -L ₃ at different L ₃ %	(Figure SI 11-SI 12)
7.	Scattering intensity and size of Zn-L ₂ -L ₃ and Ni-L ₂ -L ₃ micelles at different L ₃ %	(Figure SI 13-SI 14)

Experimental Section

Materials

The diblock copolymer, poly(N-methyl-2-vinyl-pyridinium iodide)-*b*-poly(ethyleneoxide) (P2MVP₄₁-*b*-PEO₂₀₅), was obtained by quaternization of poly(2-vinylpyridine)-*b*-poly(ethylene oxide) (P2VP₄₁-*b*-PEO₂₀₅) (Polymer Source, Mw/Mn= 1.03, Mw= 13.3 k) following a procedure described elsewhere.^[1] The degree of quaternization is about 90%. The bis-ligand compound 1,11-bis(2,6-dicarboxypyridin-4-yloxy)-3,6,9-trioxaundecane (L₂) was prepared according to literature. ^[2] 4-hydroxypyridine-2,6-dicarboxylic acid (chelidamic acid), Iron(III) chloride hexahydrate FeCl₃· 6H₂O, Manganese(II) nitrate tetrahydrate Mn(NO₃)₂·4H₂O and sodium chloride NaNO₃ (analytical grade) were purchased from Sigma Aldrich and used without further purification. Fe-L₃/L₂ micelles solutions were made in acetate buffer at pH 5 and Mn-L₃/L₂ micelles solutions were made in tris(hydroxymethyl)aminomethane (Tris) buffer at pH 7.4.

Characterizations

¹H-NMR spectra and ¹³C-NMR spectra were recorded on a BRUKER AVANCE 500 spectrometer operating at 500 MHz. UV spectra for all the samples were recorded on an SHIMADZU 1800 spectrophotometer. The MRI testing and T₁ relaxation time measurements were tested at a 0.47 T NMRI20-Analyst NMR Analyzing and Imaging system (Niumag Corporation, Shanghai, China).

Synthesis of 1,3,5-tris(2,6-dicarboxypyridin-4-yloxymethyl)benzene, L₃.

4-hydroxypyridine-2,6-dicarboxylic acid (chelidamic acid) **1** (2.5g, 13.3mmol) was added to a solution of thionyl chloride (7.5ml) in ethanol (25ml) at -10 °C. The mixture was stirred at room temperature for 24 h and then refluxed for an additional 2 h. After cooling, the mixture was concentrated under reduced pressure to give a residue, which was treated with water (20ml). The resultant suspension, cooled to 0 °C, was neutralized with 10% aq. Na₂CO₃, and filtered. The solid material was dried and recrystallized from ethanol-water (1:2) and dried under reduced pressure at 50 °C to give the diethylester **2** as white crystals. ^[3] A mixture of compound $_2$ (2.5g, 10.45mmol) and anhydrous potassium carbonate (1.31g, 9.5mmol) in dry N,N-dimethylormamide (40ml) was stirred at 25 °C in vacuo for 30 minutes, then 1,3,5-tirs(bromomethyl)benzene **3** (1.13g, 3.17mmol) was added and the reaction mixture was allowed to react at 70-80 °C for 24 hours under an atmosphere of argon. The mixture was evaporated in vacuo and the residue was partitioned between dichloromethane and water. The organic layer was washed with 1% aqueous acetic acid, water and dried (sodium sulfate). The residue obtained, after removal of the solvent, was recrystallized from ethanol and dried in vacuo at 50 °C to give **4** as a white solid. ^[4] Hydrolysis of 2.8 g of this ester was performed by heating it in a mixture of 30 ml deionized water, 30 ml ethanol and KOH (3.37g, 60mmol) for 12 h at 60 °C. The product could be precipitated in a mixture of ethanol and water. The precipitate was washed with ice water and ethanol and freeze-dried to give the desired product **5**. Yield: 57% (2.3 g, 2.58 mmol), mp > 300 °C. ¹H NMR (D₂O): δ 5.30 (s, 6H, CH₂), 7.59 (s, 6H, aromatic H), 7.66 (s, 3H, aromatic H). ¹³C NMR (D2O): δ 69.74 (CH₂), 111.50 (CH), 127.51 (CH), 136.73 (C), 154.83 (C), 166.30 (CO), 172.56 (CO₂).

SUPPORTING INFORMATION

Scheme SI 1. Synthesis of L_3 ligand.

Figure SI 1. ¹H-NMR spectrum of the tris-ligand L_3 . L_3 was dissolved in D_2O and measured at 298 K on BRUKER AVANCE III 500 spectrometer (500 MHz).

Figure SI 2. ¹³C-NMR spectrum of the tris-ligand L₃.

Preparing micelles – experimental protocol

Micellar solutions were prepared by first mixing the diblock copolymer with the ligands at the relevant salt concentration. Then, a solution of the transition metal (as nitrate) was added under stirring.

Light Scattering

The Dynamic light scattering (DLS) measurement was performed with an ALV light scattering apparatus, equipped with a 400 mW argon ion laser operating at a wavelength of 532 nm. Measurements were done at a detection angle of 90°, unless stated otherwise. All measurements were performed at room temperature.

The light scattering intensity is expressed as the excess Rayleigh ratio R_{θ} divided by the polymer concentration. R_{θ} is obtained as (1) where I_{sample} is the scattering intensity of the complex solution and $I_{solvent}$ is the intensity of the solvent. $I_{toluene}$ is the scattering intensity of toluene (the reference), and $R_{toluene}$ is the known Rayleigh ratio of toluene (2.1 × 10⁻² m⁻¹).

$$R_{\theta} = \frac{I_{sample} \cdot I_{solvent}}{I_{toluene}} \times R_{tuluene} \times \frac{n_{solvent}^2}{n_{toluene}^2}$$
(1)

Salt stability of the micelles was tested by titrating concentrated NaNO₃ solution into the micelles solution. The scattering intensity and hydrodynamic radius was recorded for each titration step.

The CUMULANT method was used to analyze the mean apparent hydrodynamic radius (R_h), which is

WILEY-VCH

(2)

SUPPORTING INFORMATION

$R_h = kTq^2/6\pi\eta\Gamma$

where q is the scattering vector, k is the Boltzmann constant, T is the absolute temperature, η is the viscosity of the solvent, and Γ is the measured average decay rate of the correlation function. The CONTIN method is used to analyze the distribution of particle (C3Ms) radius.

For angular-dependent DLS, ten correlation functions $g_2(t)$ were recorded at 6 angles θ , from 60 to 135° in increments of 15°, to evaluate the angular dependence of the diffusion coefficient. It is known that asymmetric particles always give rise to a dependence of D (= Γ/q^2) on q^2 , but for spherical particles, the D (= Γ/q^2) values should be independent of the scattering vector, because of the undetectable rotational motion. ^[5] where q is the scattering vector:

$$q=(4\pi n/\lambda)\sin(\theta/2) \tag{3}$$

Cryogenic Transmission Electronic Microscopy (Cryo-TEM)

A few microliters of samples were placed on a bare copper TEM grid (Plano, 600 mesh), and the excess liquid was removed with filter paper. This sample was cryo-fixed by rapidly immersing into liquid ethane cooled to -170 to -180 °C in a cryo-box (Carl Zeiss NTS GmbH). The specimen was inserted into a cryo-transfer holder (CT3500, Gatan, Munich, Germany) and transferred to a Zeiss EM922 EFTEM (Zeiss NTS GmbH, Oberkochen, Germany). Examinations were carried out at temperatures around -180 °C. The TEM was operated at an acceleration voltage of 200 kV. Zero-loss filtered images were taken under reduced dose conditions (500-2000 e/nm²). All images were recorded digitally by a bottom-mounted CCD camera system (UltraScan 1000, Gatan) and processed with a digital imaging processing system (Digital Micrograph 3.9 for GMS 1.4, Gatan).

Cytotoxicity Assay

Cell viability was determined by a typical 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. SMCC-7721 cells were seeded into a 96-well culture plate at a density of 5×103 cells well⁻¹ and cultured for 24 h in a 5% CO₂ incubator at 37 °C. The cells were treated with Mn-L₃ micelles at 0–60 µM or vehicle control for 24 h; the cell viability was measured by a microplate reader at 490 nm with the MTT staining assay. Optical density (OD) was read at 490 nm and background was subtracted at 630 nm using a spectrophotometer (SpectraMax M2, Molecular Devices, USA). Cell viability was expressed as a percentage of the corresponding control value. The data are expressed as the average of five replicates ± standard deviations (SD).

micelles systems.

Figure SI 4. The autocorrelation function for $Mn-L_2$ micelles (0% of L_3) at low and high salt concentration.

Figure SI 5. a: size and size distribution of $Mn-L_2-L_3$ micelles (20% of L_3) at low and high salt concentration; b: the autocorrelation function for $Mn-L_2-L_3$ micelles at low and high salt concentration.

Figure SI 6. a: size and size distribution of $Mn-L_2-L_3$ micelles (40% of L_3) at low and high salt concentration; b: the autocorrelation function for $Mn-L_2-L_3$ micelles at low and high salt concentration.

Figure SI 7. a: size and size distribution of $Mn-L_2-L_3$ micelles (60% of L_3) at low and high salt concentration; b: the autocorrelation function for $Mn-L_2-L_3$ micelles at low and high salt concentration.

Figure SI 8. a: size and size distribution of $Mn-L_2-L_3$ micelles (80% of L_3) at low and high salt concentration; b: the autocorrelation function for $Mn-L_2-L_3$ micelles at low and high salt concentration.

Figure SI 9. a: size and size distribution of $Mn-L_3$ micelles (100% of L_3) at low and high salt concentration; b: the autocorrelation function for $Mn-L_2-L_3$ micelles at low and high salt concentration.

Figure SI 10. Plots of longitudinal relaxation rate, $1/T_1$ vs Mn^{2+} concentration for $Mn-L_2$ micelles and $Mn-L_3$ micelles solutions, inset figure is vitro T_1 -weighted MR imaging of $Mn-L_3$ micelles at various Mn^{2+} concentration.

Figure SI 11. a: size and size distribution of $\text{Fe-L}_2\text{-L}_3$ micelles as a function of L_3 ligand percentage; b: Scattering intensity (normalized by the original value I_0 , where no salt is added yet) for $\text{Fe-L}_2\text{-L}_3$ micelles at different $L_3\%$ with increasing salt concentration.

Figure SI 12. The relaxivity r_1 of Fe-L₂-L₃ micelles at different L₃ fractions. r_1 is the longitudinal relaxivity of water protons in the presence of Fe-L₂-L₃ micelles.

Figure SI 13. a: Scattering intensity of $Zn-L_2-L_3$ micelles at different $L_3\%$ with increasing salt concentration; b: R_h and PDI of $Zn(II)-L_3$ micelles.

Figure SI 14. a: Scattering intensity for Ni-L₂-L₃ micelles at different L₃% with increasing salt concentration; b: R_h and PDI of Ni-L₃ micelles.

References

- [1] M. Biesalski, D. Johannsmann, J. Ruhe, J. Chem. Phys. 2004, 120, 8807-8814.
- [2] T. Vermonden, D. Branowska, A. T. M Marcelis, E. J. R. Sudholter, Tetrahedron 2003, 59, 5039-5045.
- [3] G. Chessa, A, Scrivanti, J. Chem. Soc., Perkin Trans. 1 1996, 307–311.
- [4] G. Chessa, A, Scrivanti, J. Heterocyclic Chem. **1997**, *34*, 1851-1855.
- [5] Yun Yan, Nicolaas A.M. Besseling, Arie de Keizer, Markus Drechsler, Remco Fokkink, and Martien A. Cohen Stuart, J. Phys. Chem. B 2007, 111, 11662-11669