Spontaneous Formation of Multi-Architecture Vesicles of $[C_8mim]Br + [Na]DBS$ in Aqueous Medium: Synergic Interplay of Electrostatic, Hydrophobic and π - π Stacking Interactions

Praveen Singh Gehlot,¹ K. Srinivasa Rao,¹ Pankaj Bharmoria,¹ Krishnaiah Damarla,¹ Hariom Gupta,² Markus Drechsler,³ and Arvind Kumar^{*,1,2}

¹Academy of Scientific and Innovative Research (AcSIR)-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G. B. Marg, Bhavnagar-364002, Gujarat, India.

²CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and

Industrial Research (CSIR), G. B. Marg, Bhavnagar-364002, Gujarat, India.

³Bayreuth Institute of Macromolecular Research (BIMF)–Soft Matter Electron Microscopy

Supporting information

Annexure 1

1. The Adsorption efficiency of surfactant at air-water interface is estimated by measuring pC_{20} using the relation (1)^{1,2}

 $pC_{20} = -\log C_{20}$(1)

where, C_{20} is the concentration needed to reduce the surface tension of the solvent (water in the present case) by 20mN.m⁻¹. The higher pC_{20} value indicates high adsorption efficiency of the surfactant.³

2. Effectiveness of surface tension reduction is the other parameter that measures the adsorption efficiency of a surfactant, denoted by π_{CMC} and calculated using the relation (2).^{1,4}

where γ_{H_2O} stands for the surface tension of the pure water and γ_{CAC} stands for the surface tension of the solvent medium at CAC.

3. The amount of surfactants adsorbed at the interface is estimated from relative surface excess concentration (Γ_{max}^{tot}). The values Γ_{max}^{tot} of at the CMC have been calculated using Gibbs adsorption Eq. 3 from the least-squares slope of the γ versus log C plot.

$$\Gamma_{max}^{tot} = -\frac{1}{nRT} \frac{\partial \gamma}{\partial \ln C} \dots (3)$$

Where " $\partial \gamma / \partial \ln C$ " is the slope of $\gamma - \ln C$ plot in the pre *CMC* region.⁵⁻⁷ and n is Gibbs adsorption coefficient. In the current paper it is used from the mole fraction value of surfactants⁸ using the relation, $n = \sum_{i} r^{i} x^{i}$, where rⁱ and xⁱ correspond to the number of species formed from the ith component and the mole fraction of the ith component respectively.

4. Minimum area occupied by monomers at the interface was calculated using equation 4.

Where N_A is Avogadro number and the factor of 10^{16} arises as a conversion factor of area from nm² to Å.⁵

Figure S1. NMR spectra of synthesised [C₈mim]Br

2.1.¹*H NMR* chemical shifts Data.

[C₈mim]Br, ¹H-NMR: 200MHz (DMSO-d₆): δ_H (ppm) 9.361 (s, 1H), 7.879(d, 2H), 4.212(t, 2H), 3.901(s, 3H), 1.798(t, 2H), 1.255(m,10H), 0.859(t,3H).

ESI-MS: [C₈mim]⁺ m/z:195.19

Figure S2. Plot showing variation in ratio of I_1/I_3 vibronic bands of pyrene as a function of mixtures concentrations at different mole fractions. CAC were obtained from the first derivative of I_1/I_3 vs concentration curve.

Figure S3. Conductometric determination of the CAC of $[C_8mim]Br+[Na]DBS$ mixtures at different mole fractions at 298 K.

Figure S4. Turbidity measurement of cat-anionic mixture of

[C₈mim]Br+ [Na]DBS.

Figure S5. Digitalimages of [C₈mim][Br]+ Na[DS] mixtures at different mole fraction of [C₈mim][Br].

Figure S6. Intensity autocorrelation functions of $[C_8mim][Br] + Na[DBS]$ mixed micelles and vesicles at various mole fraction of $[C_8mim][Br]$.

Figure S7.3-D AFM images showing of mixed micelles along with height profiles of $[C_8 mim][Br]+[Na]DBS$ mixture at (A) $x_1=0.1$ and (B) $x_1=0.9$ mole fraction of $[C_8 mim][Br]$.

Figure S8. Cryo-TEM images showing unilamellar vesicles of different architectures, sphere and tubules and ribbons.

Figure S9. NOESY spectra in expanded form for the $[C_8mim]Br + [Na]DBS$ (10mmol.L⁻¹) mixture at *x*=0.5 of $[C_8mim]Br$ in D₂O. NOESY spectra show interaction of N-CH₃ with (A) aromatic region and (B) alkyl chain.

Figure S10. Hydrodynamic radii and corresponding intensity correlation function of (A), (B) 0.1% BSA (C), (D) $[C_8mim]Br + [Na]DBS$ vesicles (2 mmol.L⁻¹) and (E), (F) BSA + vesicles

Figure S11. CD spectra of 0.1% BSA in buffer solution as a function of time (days).

REFERENCES:

- Luezak, J.; Hupka, J.; Thoming, J.; Jungnickel, C. Self organization of imidazolium ionic liquids in aqueous solution. *Colloid and Surface A: Physicochemical and Engineering Aspects*, 2008, 3, 125-133.
- Rosen, M. J. Surfactants and Interfacial Phenomena, second ed., Wiley, New York, 1989.
- Comelles, F.; Ribosa, I.; González, J. J.; Garcia, M. Micellization of sodium lauryl ether sulphate (SLES) and short chain imidazolium ionic liquids in aqueous solution, *J. Colloid Interface Sci*. 2014, 425, 44-51.

- Jiao, J.; Dong, B.; Zhang, H.; Zhao, Y.; Wang, X.; Wang, R.; Yu, L. Aggregation Behaviours of Dodecyl Sulfate-Based Anionic Surface Active Ionic Liquids in Water. J. Phys. Chem. B 2012, 116, 958-965.
- Mondal, J. H.; Ahmed, S.; Das, D. Physicochemical Analysis of Mixed Micelles of a Viologen Surfactant: Extended to Water-in-Oil (w/o) Microemulsion and Cucurbit [8] uril-Assisted Vesicle Formation. *Langmuir* 2014, *30*, 8290-8299.
- Pan, A.; Sil, P.; Dutta, S.; Das, P. K.; Bhattacharya, S. C.; Rakshit, A. K.; Aswal, V. K.; Moulik, S. P. Micellization of Cetyltrimethylammonium Bromide: Effect of Small Chain Bola Electrolytes. *J. Phys. Chem. B* 2014, *118*, 3041-3052.
- Eastoe, J.; Nave, S.; Downer, A.; Paul, A.; Rankin, A.; Tribe, K.; Penfold, J.; Adsorption of Ionic Surfactants at the Air–Solution Interface. *Langmuir* 2000, *16*, 4511-4518.
- Mukherjee, I.; Moulik, S. P.; Rakshit, A. K. Tensiometric Determination of Gibbs Surface Excess and Micelle Point: A Critical Revisit. J. Colloid Interface Sci. 2013, 394, 329-336