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Abstract. Large vesicles obtained by the extrusion method represent adequate membrane models to probe
membrane dynamics with neutron radiation. Particularly, the shape fluctuations around the spherical
average topology can be recorded by neutron spin echo (NSE). In this paper we report on the applicable
theories describing the scattering contributions from bending-dominated shape fluctuations in diluted
vesicle dispersions, with a focus on the relative relevance of the master translational mode with respect to
the internal fluctuations. Different vesicle systems, including bilayer and non-bilayer membranes, have been
scrutinized. We describe the practical ranges where the exact theory of bending fluctuations is applicable
to obtain the values of the bending modulus from experiments, and we discuss about the possible internal
modes that could be alternatively contributing to shape fluctuations.

1 Introduction

The bending stiffness is one of the most relevant mechani-
cal characteristics in the description of the stress response
of biological membranes [1]. This mechanical parameter
is closely related to the internal cohesion of the lipid bi-
layer, which is ultimately determined by structural param-
eters such as the bilayer thickness, the average molecular
area occupied by lipids in the monolayers and the inter-
actions involved to form the bilayer. Classical diffraction
approaches have been extensively exploited to study struc-
tural parameters in lyotropic phases using X-ray meth-
ods [2]. The most popular method consists of measuring
diffraction signals in samples composed of multilamellar
stacks of lipid bilayers to construct electron density pro-
files from the intensities of the diffraction peaks and from
the shapes of the distributions. Small angle scattering
methods, particularly with X-rays (SAXS), have provided
a successful option to determine the elastic moduli of a ly-
otropic array [3,4]. However, a closer look at the real thing
requires methods able to probe mechanics of single lipid

� Contribution to the Topical Issue “Neutron Biological
Physics” edited by Giovanna Fragneto and Frank Gabel.

a e-mail: thomas.hellweg@uni-bielefeld.de
b e-mail: monroy@quim.ucm.es

bilayers. Unilamellar vesicles are attractive because they
are topologically and structurally equivalent to biological
membranes. Similarly to lipid bilayers in living cells, they
are constituted of a continuous membrane enclosing a liq-
uid compartment separated from a solvent exterior. Di-
luted dispersions of large unilamellar vesicles (LUVs) can
be easily prepared with a narrow distribution of vesicle
sizes, providing a statistical population for optimal en-
semble averaging of the mechanical properties of a high
number of identical bilayers. However, instead of having
intense diffraction peaks as in highly dense multilamellar
arrays, scattering from dilute dispersions of unilamellar
vesicles is much weaker and diffuse, making the scatter-
ing intensities practically undetectable at high wave vec-
tors. It is precisely at high wave vectors where small-scale
mechanical deformations might be distinguished from the
static form factor of the spherical vesicle. Since higher con-
trast is achieved with specimen hydrogen atoms in solvent
deuterated samples, neutron radiation provides an excel-
lent alternative to X-rays to assess structure in biological
matter [5, 6]. Moreover, cold neutrons do not cause any
beam damage in the organic material. Therefore, small an-
gle neutron scattering (SANS) was proposed to study the
structure of lipid bilayers in unilamellar vesicles [7]. The
most popular analysis deals with fitting SANS profiles to
form-factor models accounting for the spherical shell ge-
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ometry of the vesicle and for details of the inner bilayer
structure [8–10]. However, although increasingly realistic
models of membrane structure can be defined, the diffuse
contribution from mechanical fluctuations is not easily ac-
counted for being usually interpreted as a smearing com-
ponent in the SANS profile due to structural polydisper-
sity. Hence, energy-resolved scattering methods represent
the optimal choice for directly detecting shape fluctua-
tions of vesicle membranes. The stochastic signal due to
shape fluctuations can be rationalized as a correlated con-
tribution to the scattering from all the different scatters
in the vesicle. In particular, neutron spin echo (NSE) pro-
vides the adequate q-range to quantitatively probe fast
fluctuation dynamics over small lengths typical for these
nanometer-sized vesicles. Therefore, an approach based on
NSE experiments performed on diluted LUV dispersions
is advantageous for studying membrane mechanics. First
and foremost, NSE probes the dynamics of isolated single
bilayers. As an added convenience, diluted samples can be
used which minimizes the interaction between the mem-
branes and reduces mutual perturbation. Moreover, the
technique is non-invasive. In addition, NSE provides an
ensemble average over a large population of vesicles, a
determinant advantage over single-vesicle methods. Addi-
tionally, sufficient neutron contrast is endowed with only
solvent deuteration (use of heavy water), which makes
lipid vesicle membranes “visible” in a neutron-transparent
medium. Using LUVs in the 100 nanometer size domain,
NSE might be adequate for studying the relaxation dy-
namics of the shape undulations in the regime of high
scattering wave vectors compared to vesicle dimensions,
i.e. qR � 1 (q is the modulus of the 3D scattering vector
and R the vesicle radius). In the NSE dynamic window,
shape fluctuations appear coupled together with trans-
lational effects, which can be conveniently unfolded by
complementary measurements of the vesicle radius using
dynamic light scattering (DLS) [11, 12]. The aim of the
present contribution is to shed light on the problem of
vesicle dynamics in the context of the analysis of dynamic
scattering data. To our best knowledge only a very limited
number of works directly investigate the thermally excited
undulations of unilamellar lipid vesicles. In the present ar-
ticle, we report on NSE measurements of vesicle fluctua-
tions performed on two different classes of membrane sys-
tems, lipid bilayers and polymer membranes. Ideally thin,
sheet-like, membranes undergo shape fluctuations exclu-
sively governed by bending elasticity. Lipid membranes,
however, self-assemble as a tail-to-tail bilayer, a structural
detail which could introduce additional contributions to
its fluctuation dynamics. Particularly, curvature fluctua-
tions coupling transverse bending with longitudinal com-
pression could be relevant at high wave vectors [13], where
local curvature causes a strong distortion of the lipid dis-
tribution in each monolayer leaflet. Conversely, if a com-
pact sheet-like structure was considered, as with copoly-
mer membranes, pure transversal bending deformations
can be considered to exist separately from longitudinal
motions. In this case, a simple theory of bending elasticity
might be sufficient to account for the shape fluctuations
of vesicle membranes. In bilayers, however, curvature mo-

tions are largely influenced by dilatational stresses whose
dynamics is governed by the relative sliding between the
two monolayers [13]. Such a hybrid mode of curvature mo-
tion could eventually contaminate the pure-bending re-
sponse making an extension of the theory to compression
elasticity necessary. In the next section, we describe the
minimal theory necessary to rationalize the pure-bending
shape fluctuations in terms of the bending stiffness of the
membrane, with an emphasis on their applicability limits
beyond which, another classes of curvature motion could
eventually come into play.

2 Theory

The dynamics of the curvature undulations of elastic
membranes is usually described by the Helfrich-Canham
Hamiltonian for the bending deformation [1] in combina-
tion with linear hydrodynamics in the viscous regime [14,
15]. If inertial terms are neglected, the hydrodynamic
equations can be resolved in the Stokes-limit and thus
dynamic correlations arise from the balance between elas-
tically restored motion (driven by the bending stiffness,
κ) and viscous dissipation (governed by the bulk viscosity,
η) [15]. When the linear dynamical equations are resolved
for the bending fluctuations described as 2D planar waves
in a flat membrane (k = |k| is the modulus of the in-plane
wave vector of the transversal fluctuation), the height-to-
height autocorrelation function is obtained as [14–16]

〈hk(t)h−k(0)〉 =
〈
h2

k

〉
B

e−ωB(k)t, (1)

with the amplitude given as the ratio between the thermal
energy and the elastic energy of the bending mode, as
predicted by the equipartition theorem [16,17]

〈
h2

k

〉
B

=
kBT

κ

1
k4

. (2)

Notice that weaker fluctuations correspond to stiffer mem-
branes. The time dependence of the bending modes is gov-
erned by a k3-dependent relaxation rate

ωB(k) =
κ

4η
k3, (3)

which becomes faster with increasing bending stiffness.
The above treatment considers the membrane trans-

lationally immobile, where only the bending fluctuations
are accounted for. In a more complete theory for vesicles,
they are assumed to perform translational motions by dif-
fusion in the medium as a whole. Bending modes appear
as a series of internal modes accounting for the shape fluc-
tuations. In the case of spherical membranes, e.g. vesicles
or emulsion droplets, the corresponding intermediate scat-
tering function might be written as a function of the 3D
scattering vector as [18,19]

S(q, t) = e−ΓT t [AT (q) + AB(q)SB(q, t)] , (4)

with ΓT being the diffusive rate of the translational motion

ΓT = DT q2, (5)
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where DT is a translational diffusion coefficient given by
the Stokes-Einstein formula

DT =
kBT

6πηR
. (6)

On the one hand, AT (q) accounts for the relative am-
plitude of the translational mode, which is proportional
to the size of the diffusing object. On the other hand,
AB(q) accounts for the relative contributions of the in-
ternal modes, i.e. the shape fluctuations whose effec-
tive time dependence is given by the dynamic function
SB(q, t). The two relative amplitudes should be defined
in a way such that they are mutually normalized [18],
i.e. AT + AB = 1. Within the hydrodynamic theory, Mil-
ner and Safran (MS) described the fluctuation dynam-
ics of spherical membranes, e.g. microemulsion droplets
and vesicles [20]. The MS theory couples dynamically the
normal bending modes of the flexible spherical membrane
with the effective viscous friction exerted by the bulk sol-
vent [20]. In that case, the hydrodynamic equations are
solved for the surface modes described as spherical har-
monics, which constitute the natural ansatz for the shape
fluctuations in the spherical topology. For membranes
with a zero spontaneous curvature, at thermal equilib-
rium, MS describe bending fluctuations as normal modes
defined by the spherical harmonics characterised by the in-
teger number l which determine the discrete values of the
fluctuation wave vector, k(l) = l/R (l = 2, 3, 4, . . . ,∞).
The time dependence is overdamped, characterized by
an autocorrelation function as in eq. (1) [20]. For spher-
ical tensionless vesicles, the relaxation rate of the dis-
crete modes is ωB = (κ/ηR3) l (l + 1)/Z(l), with Z(l) =
(2l + 1)(2l2 + 2l− 1)/l(l + 1)(l + 2)(l− 1). At high k, such
discrete modes converge to the continuous solution of the
planar membrane; if kR (= l) � 1, the dimensionless geo-
metric factor takes the approximate value Z(l) ≈ 4/l, thus
ωB ≈ (κ/4η)k3, the dispersion law of the bending modes
in the planar membrane (see eq. (3)). In the MS theory,
the translational contribution to scattering is essentially
determined by the static structure factor of the diffusing
object, AT (q) = 4π[j0(qR)]2, j0 being the zeroth-order
spherical Bessel function [20]. With respect to the contri-
bution due to shape fluctuations, all the discrete bending
modes (l ≥ 2) contribute to their structure factor propor-
tionally to the spectral amplitudes weighted by a modu-
lation factor [20]

AB(q)SB(q, t) =
∑

l≥2

Fl(qR)
〈
h2

l

〉
B

e−ωB(l)t, (7)

where the weighting factor Fl is given by

Fl(z) = (2l + 1) [(l + 2)jl(z) − zjl+1(z)]2 , (8)

with jl(qR) standing for the l-th order spherical Bessel
function.

For the spherical geometry, eq. (7) describes the dy-
namic structure factor of the shape fluctuations as a dis-
crete sum of exponential decays accounting for the relax-
ation of all the spherical modes projected on the observed

scattering direction. In the case of a dynamics dominated
by bending modes, i.e. 〈hk

2〉 ∼ k−4, ωk ∼ k3, an effec-
tive stretched-like relaxation might arise from the sum of
modes in eq. (7). In rigid membranes (κ � kBT ), the am-
plitudes of the bending modes are extremely weak thus
being quite inefficient in exploring volume. Furthermore,
they are strongly damped thus the effective dissipation
becomes partially frustrated. Consequently, only the com-
plete description in eq. (7) provides adequate account of
the collective fluctuation dynamics. However, in the par-
ticular case of floppy membranes undergoing large shape
fluctuations, a given spherical mode of fluctuation dom-
inates at the narrow spatial scale determined by the ob-
served wave vector. In these cases (κ ≈ 0), we mainly ob-
serve scattering from a single-fluctuation mode, kdom ≈ q
(= ldom/R); then, the multimodal description in eqs. (7)-
(8) can be in practice reduced to a single-mode approxi-
mation [21]

S
(0)
B (q, t) ≈ exp (−ΓMSt) , (9)

with a relaxation rate corresponding to the decay rate of
the congruent bending mode, this is ΓMS ≈ ωB =(κ/4η)q3

(see eq. (3)).
For vesicle phases, such a single-exponential approach

is only a crude approximation. Exception is the case of
parallel scattering from an oriented lamellar phase, where
the relaxation rate of the dynamic structure factor coin-
cides with the mode relaxation rate [22,23]. With respect
to the fluctuation amplitudes, we plot in fig. 1A the pre-
diction of the MS theory for the normalized amplitude of
the translational mode of the spherical vesicle as a func-
tion of the reduced wave vector. For monodisperse spheres,
the amplitudes display an oscillatory pattern, with a de-
creasing envelope indicating the progressive decrease of
the translation amplitude in favor of the bending fluctua-
tions. When size polydispersity is considered, the scatter-
ing amplitudes should be averaged over the equilibrium
distribution of vesicle sizes. In those cases, increasing poly-
dispersity causes the oscillations to progressively smear
out, finally disappearing into a monotonic pattern clearly
indicating the progressive influence of the bending fluctu-
ations on the dynamic structure factor (see fig. 1A). Be-
cause high bending stiffness causes a dramatic decrease of
the shape fluctuations (see eq. (2)), the MS theory predicts
a progressively decrease of the amplitude of the bending
contribution (AB) with respect to the bare translational
mode (AT � AB). This effect is shown in fig. 1B, where
a κ-dependent crossover between a translation-dominated
regime at low q’s and a fluctuation-dominated regime at
high q’s can be observed.

The MS theory has been productively exploited in the
dynamical description of the shape fluctuations of floppy
droplets in microemulsion phases (κ ≈ 0) detected by
NSE [21, 22, 24–29]. However, it has rarely been applied
to scrutinize lipid vesicle systems [11, 12, 30]. When ap-
plied to rigid membranes (κ � 0), the single-mode MS
approach (eq. (9)) only leads to a qualitative interpreta-
tion of the q3-dependences of the relaxation rates. How-
ever, it fails to give realistic values for the elastic con-
stant, κ. For lipid bilayers, κ should be of the order of
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Fig. 1. A) Amplitudes of the translational component accord-
ing to theory by Milner and Safran. The three plots show three
different cases of polydispersity ΔR for a membrane of bending
rigidity κ = 10kBT . The effect of the polydispersity enters as a
convolution and was computed numerically. The vertical lines
delimit the wave vector range accessible to DLS and NSE for
R = 100 nm vesicles. B) Amplitudes of translation and bending
modes for three different bending rigidities at a polydispersity
of ΔR = 0.2R.

5–20 in kBT units, however, significantly higher values
are obtained when the NSE relaxation rates are discussed
in view of the classical MS theory. Furthermore, early ex-
periments with lipid lamellar phases and vesicle suspen-
sions already demonstrated large deviations of the NSE
relaxation profiles from the single-exponential behavior of
eq. (9) [22, 31, 32]. Although being analytically exact, the
complete MS scheme based on discrete spherical harmon-
ics modes is quite difficult to implement in fitting algo-
rithms. Furthermore, collective averaging in polydisperse
samples prevents the detailed detection of the oscillatory
features linked to the spherical structure factor. Moreover,
NSE probes shape fluctuations at high q’s determined by
the observational set-up, which do not necessarily coincide
with the discrete wave vectors of the spherical harmonics
(k = l/R, with l ≥ 2). Therefore, for large lipid vesicles
probed by NSE at high wave vectors (qR ≥ 5), instead
of the discrete spherical harmonics, a continuous approx-
imate solution as planar waves is possible to describe the
bending fluctuations [33, 34]. In these cases, the continu-

ous “Fourier-modes” description is reasonably equivalent
to, and operatively easier than, the discretized schema in
the MS theory. Once assumed an effective planar descrip-
tion, we will consider how it can be implemented in the
exact multimodal description of the fluctuation dynamics.

In a pioneering theoretical work, Zilman and Granek
[35,36] described the dynamic structure factor of fluctuat-
ing rigid membranes and provided a reliable explanation
for the apparent inconsistencies that result from incom-
plete approaches to the MS equations (cf. the single-mode
approach in eq. (9)). Strictly speaking, dynamic scatter-
ing methods, NSE among them, give access to the inter-
mediate scattering function S(t) which contains the rel-
evant information about the fluctuation structure factor.
The scattering from a fluctuating object contains the dy-
namic information on the correlations between different
points. Consequently, the bending contribution SB(t) ac-
tually corresponds to a convolution between the differ-
ent scatters in a deformable membrane undergoing shape
fluctuations [18]. In the ZG theory, this is assumed as
correlated differences in the relative positions of different
points in the membrane, thus the calculation of the dy-
namic structure factor implies an ensemble average over
the different scatters in the membrane, so that SB(q, t) =
S0〈exp[iqΔh(t)]〉, with a normalized amplitude decreas-
ing as S0 ∼ q−2 [23, 37]. Because thermal fluctuations
obey Gaussian statistics, by a general theorem of stochas-
tic processes [38], such a convolution can be calculated
as a Gaussian distribution of the averaged fluctuations,
that is 〈exp (i q Δh (t) )〉 = exp (−q2〈Δh2 (t)〉/2 ). In rigid
membranes, the shape fluctuations follow a sub-diffusive
dynamics slower than the free-diffusion trajectories ex-
pected in a very soft membrane [37]. Specifically, ZG found
〈Δh2(t)〉 ≈ (Dt)2/3 with an effective diffusion coefficient
D ≈ 0.025(kBT/κ)1/2(kBT/η)q [37]; thus, for membrane
phases, the fluctuating contribution to the intermediate
scattering function is expected to vary as [23,35]

S
(ZG)
B (q, t) ≈ exp

[
−(ΓZGt)2/3

]
, (10)

with a decay rate [23,35]

ΓZG ≈ 0.025
(

kBT

κ

)1/2 (
kBT

η

)
q3. (11)

The ZG theory predicts a stretched exponential profile for
the dynamic structure factor of the fluctuating membrane.
The stretched decay in eq. (10) indicates summed corre-
lations over different modes, differently from the uncorre-
lated fluctuations in extremely floppy membranes, which
can be approximately described by a single-exponential
decay (see eq. (9)). The decay rates are expected to de-
crease as ΓZG ∼ κ−1/2, differently from the relaxation
rates of the individual modes which increase with increas-
ing bending stiffness, ωB ∼ κ.

The ZG theory has been verified in dynamic light scat-
tering [12, 39] and in NSE experiments performed at rel-
atively low q’s [11, 40–42]. However, to fit NSE data in
the ultrahigh-q regime (corresponding to short distances,
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Table 1. Chemical characteristics and relevant physical properties of the lipids used in this work.

Lipid (full name) (Abbreviation) Chemical purity Tm (◦C)
Lyotropic phase

(at 25 ◦C)

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine POPC > 99% −2 disordered fluid (ld)

1,2-dimyristoyl-sn-glycero-3-phosphocholine DMPC > 99% +23 disordered fluid (ld)

1-stearoyl-2-myristoyl-sn-glycero-3-phosphocholine SMPC > 99% +30 gel

of the order of the bilayer thickness, qh ≥ 1), various
groups [25, 27, 43] have found it necessary to assume an
apparent solvent viscosity over three times the true value.
Recently, Watson and Brown [44,45] and Arriaga et al. [46]
have argued that this discrepancy between theory and ex-
periment can be resolved by considering dissipative mech-
anisms within the lipid bilayer itself. An adequate meso-
scopic model of a bilayer might include not only bend-
ing motions of the bilayer as a whole but also local fluc-
tuations in the monolayer densities. High-k membrane
undulations are indeed strongly affected by dilatational
stresses caused by local unbalances of the monolayer den-
sities due to curvature [13]. The importance of this hy-
brid mode of curvature motion coupling transverse bend-
ing with longitudinal dilation was seminally highlighted
by Evans and Yeung [13]. The dynamic theory was later
developed by Seifert and Langer [47,48] on the assumption
that energy dissipation within transverse bending fluctu-
ations is controlled by bulk friction, whereas they are sur-
face viscosities, mainly intermonolayer friction, the prin-
cipal actors in the dissipation mechanism of the hybrid
compression-curvature modes. Because the hybrid mode
is a diffusive mode driven by the compression elasticity of
the monolayers, its relaxation rate is expected to vary as
ωH ≈ (K/8b)k2 (with K being the compression modulus
of the monolayers and b an intermonolayer friction coeffi-
cient) [47,48]. Bilayer dynamics within the bimodal model
remains overdamped, with two coexisting modes respec-
tively driven by bending and compression elasticity. The
existence of hybrid modes was early suggested by Méléard
et al. [49] from the dynamical analysis of the shape fluctu-
ations of giant bilayer vesicles. In a previous work, hybrid
modes were unequivocally detected in giant vesicles made
of fluid lipid bilayers with different compositions [50]. The
hybrid modes were proved to be an important class of
curvature motion becoming progressively important with
increasingly higher curvatures, whose dissipation is not
governed by bulk friction, rather by intrinsic membrane
viscosities [47–50]. The possible influence of this dissipa-
tion mechanism within the bilayer has previously been dis-
cussed in the context of NSE experiments [46]. However,
precise expressions for the dynamic structure factor cor-
responding to hybrid modes are not still available thus
making rigorous comparison with experiments difficult.
The dominant role of an extra dissipative mode at high
q’s, compatible with the hybrid mode, was proven in re-
cent NSE experiments performed with POPC/cholesterol
mixtures [46]. In that work, intermonolayer friction was
tuned by adding cholesterol, a small molecule able to
enhance structural coupling between monolayers through

flip-flop transport. In that regime (qh ≥ 1), very high cur-
vatures are involved, with wavelengths shorter than mem-
brane thickness, thus the system prefers to relax stress
by exchanging cholesterol between the monolayers. Con-
sequently, coupling between bending and dilational mo-
tions becomes optimal at high curvatures, thus expecting
the hybrid mode to dominate in this regime [39]. Alterna-
tively, fluctuations in the membrane thickness have been
hypothesized to play an important role in the same high-q
regime (qh ≈ 1) [51]. In this case, an excess in dynamics at
the membrane thickness length scale must originate from
thickness fluctuations [51].

Here, we are just concerned with a reliable method to
unfold the contribution from pure-bending fluctuations to
the raw NSE data obtained from different classes of un-
dulating membranes. In this paper, we focus in the low-q
border of the NSE window (0.18 ≤ q/nm−1 ≤ 0.33), at
wave vectors where bending modes can be treated within
the flat membrane approximation (qR � 1) but hybrid
modes and thickness fluctuations are still not dominating
(qh < 1). At higher q’s, those other contributions arising
from the internal structure of the membrane could eventu-
ally trouble data analysis in bilayer systems. However, to
give precise account of such internal modes in NSE signals,
a theory of their dynamic structure factor is still lacking.
In awaiting for that such theory, empiric comparisons be-
tween bilayer and non-bilayer systems with a comparable
bending stiffness should help to enlighten about the opti-
mal analytic strategies to obtain the mechanical parame-
ters from NSE data considered over the whole q-range.

3 Materials and methods

3.1 Chemicals

Deuterated water from Sigma (99.9%) was used in all ex-
periments as a dispersion solvent. Lipids were obtained as
powders from Avanti Polar Lipids (Alabaster, AL). Their
complete chemical names and relevant properties are listed
in table 1.

The lipids were stored at −20 ◦C and used as re-
ceived, without further purification. The diblock copoly-
mer poly(butadiene-co-ethyleneoxide) (PEO29-PBD46 tri-
block copolymer; Mw = 3800 g/mol) was obtained from
Polymer Source (Canada) with a minimal polydispersity
(Mw/Mn < 1.05). Pluronics L121 (PEO5-PPO68-PPO5

copolymer, Mw = 4, 400 g/mol) was from Sigma-Aldrich.
Ethanol, chloroform and other solvents were from Sigma-
Aldrich.
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3.2 Large Unilamellar Vesicles (LUVs)

LUVs were prepared by the extrusion method using a com-
mercial miniextruder (Liposofast, AVESTIN, Canada).
To avoid possible differences between DLS and NSE ex-
periments, we always used D2O as the aqueous solvent
(Sigma; 99.9%, η = 1.2010 cPoise at 22 ◦C). To prepare
vesicles, the powder lipid is first dissolved in a chloro-
form/methanol mixture (2:1). Later, the solvent is slowly
removed by evaporation in a dry nitrogen stream, yielding
a homogenous lipid film consisting of multiple lamellae.
The lipid film is then hydrated by pouring the aqueous
phase. During the hydration phase (1 h), the dispersion
is frequently vortexed and maintained above the melting
temperature of the lipid mixture (+10 ◦C; see data in ta-
ble 1). Then, this lipid suspension is extruded through
a polycarbonate filtering membrane (Whatman, Florham
Park, NJ) with a defined pore size (200 nm), producing
unilamellar vesicles with a diameter near the pore size.
Extrusion is performed at a temperature well above Tm,
inside an oven with the temperature fixed at Tm + 10 ◦C.
Ten extrusion cycles ensure a homogeneous dispersion of
LUVs with a constant size and low polydispersity [52]. The
dispersion was then filtered through a 0.2mm teflon filter
and poured into quartz tubes. The concentration of the
vesicle suspensions was fixed constant at 2mg/mL (final
concentration), a value diluted enough to avoid for inter-
action effects. For further details on the procedures, see
ref. [10].

3.3 CryoTEM

The sample is vitrified by the method described in refs.
[53,54]. Briefly, a few microlitres of diluted vesicle suspen-
sion (1mg/mL wt%) is placed on a bare copper TEM grid
(Plano, 600mesh). The sample is cryo-fixed by rapidly
immersing into liquid ethane at its freezing point. The
vitrified specimen is loaded into a cryotransfer holder
(CT3500, Gatan, Munich, Germany) and transferred to
a Zeiss EM922 EF-TEM (Zeiss NTS GmbH, Oberkochen,
Germany).

3.4 Dynamic Light Scattering (DLS)

DLS measurements were carried out in the ILL Soft Mat-
ter Partnership Lab (PSCM@ILL). Measurements have
been performed using an ALV CGS-3 DLS/SLS Laser
Light Scattering Goniometer System (ALV GmbH Lan-
gen, Germany). This instrument allows for a simultane-
ous measurement of static and dynamic light scattering
in an angular range from 25◦ up to 155◦. It is equipped
with a HeNe laser operating at a wavelength of 633 nm
with a power of 22mW. An ALV/LSE-5004 Light Scat-
tering Electronics is used together with a ALV-7004 Fast
Multiple Tau Digital Correlator. Scattering intensities are
recorded via a Pseudo-Cross Correlation setup, consist-
ing of a fibre-optical detection unit with a fibre based

beam splitter and 2 APD detectors. For DLS measure-
ments, a small aliquot of the same vesicle suspension pre-
pared for NSE experiments is diluted in D2O (1:10 v/v).
DLS (0.2mg/mL) and NSE (2mg/mL) experiments were
indeed performed with the same vesicle suspension, DLS
running immediately before NSE beamtime. The samples
are poured into quartz cells (10mm O.D., Hellma). Then,
they were placed in the measurement cell which is filled
with decaline to match the refractive index of the quartz
sample cells. Temperature inside this cell is measured by
a Pt-100 sensor and kept constant at 25.0 ◦C with a pre-
cision of ±0.1 degrees. The intensity correlation function
g(2)(q, t) is measured using the ALV-7004 hardware corre-
lator. This function is related to the field autocorrelation
function g(1)(q, t) through Siegert’s relation

g(2)(q, t) = 1 + C
∣∣
∣g(1)(q, t)

∣∣
∣
2

. (12)

The field autocorrelation function is analyzed by CON-
TIN [55, 56], an algorithm based on the inverse Laplace
transform. Identical results are obtained by REPES [57].
No assumption about either the number of relaxation
processes or the distribution shape is required in these
methods. The autocorrelation functions g(1)(q, t) are de-
scribed as a distribution of correlation times P (Γ ) cen-
tred at a given relaxation rate ΓT (q) and with bandwidth
ΔΓT which is an accurate estimator of the standard de-
viation of the relaxation rates due to sample polydisper-
sity. No shape fluctuations exist at wave vectors smaller
than the vesicle size, qR < 1. Thus, in this regime, the
diffusive frequencies obtained by CONTIN must corre-
spond to pure translational motion, ΓT (q) = DT q2. Con-
sequently, the hydrodynamic size of the suspended vesicles
can be easily obtained by fitting the translational relax-
ation frequencies extracted from the DLS data to eqs. (5)-
(6) in the low-q limit. Within this approach, the distribu-
tion bandwidths are related with the size polydispersity
as σR = ΔR/R = ΔΓT /ΓT . Indeed, DLS is classically
used to characterize the vesicles with respect to their size
and polydispersity, but no internal motions can be de-
tected in the qR < π regime accessible to He-Ne DLS.
However, extending the DLS q-range by using UV laser
lines, Cantú and co-workers were the first in revealing a
fast contribution due to shape fluctuations superposed to
the usual translational component [58, 59]. Those works
considered an unconventional configuration with an UV
source (364 nm), optimized to extend the accessible q-
range to higher values, closer to the minimum of the static
form factor of LUVs. The secondary relaxation detected
in those works was attributed to global shape deforma-
tions of the vesicles, whose relaxation dynamics has been
interpreted in terms of MS- [58,59] and ZG models [12].

3.5 Neutron Spin Echo (NSE)

The reported NSE experiments were performed on the
IN15 instrument at the ILL, Grenoble [60]. This instru-
ment provides the longest Fourier times currently available
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worldwide at NSE instruments. The samples are poured
into quartz cells (1mm thickness, Hellma). The instru-
ment was equipped with a thermostatic holder for these
cells and all measurements were done at a temperature of
25.0±0.1 ◦C. A Fourier time ranging up to 207 ns was ex-
plored at different q-values in the range from 0.184 nm−1

up to 1.201 nm−1. To achieve this, measurements at a
wavelength of λ = 12 Å and 15 Å had to be performed.
The wavelength distribution in both cases had a HWHM
of Δλ/λ = 0.15.

3.6 NSE intermediate scattering function: Fitting
procedure

In view of the theory described in sect. 2, satisfactory
analysis of NSE data is only possible by unfolding trans-
lational vesicle motion and bending fluctuations through
an adequate account of the relative amplitudes and proper
choice of the intermediate scattering function describing
the relaxation decay. Regarding the relative amplitudes, in
typical lipid vesicles, translation is clearly dominant over
fluctuation modes in the range of wave vectors qR < 20
(see fig. 1B), a regime where translation cannot be ne-
glected. At higher rigidities, this dominance is significantly
enhanced, so the influence of the translational mode still
extends up to higher q’s. For typical LUVs (κ ≈ 20kBT )
with a size R ≈ 100 nm, the contribution of translation
to the NSE signal should be not neglected up to wave
vectors q � 0.5 nm−1 (qR � 50; see fig. 1B), thus being
relevant along the whole range of wave vectors accessible
to NSE. Considering the ZG framework, the normalized
NSE profiles might be fitted by the following expression:

S(t) = exp(−DT q2t)
{

A + (1 − A) exp
[
−(ΓZGt)2/3

]}
.

(13)
Because translation motion dominates over bending fluc-
tuations, the structure factor is difficult to unfold when the
qR < 10 regime is scrutinized [25,28,61]. In this regime, it
is usually approximated by an “apparent” bimodal func-
tion [11,12,59]

S(q, t)≈A exp(−DT q2t)+(1−A) exp
[
−(Γt)2/3

]
, (14)

which is valid if Γ � DT q2, a condition usually fulfilled
in the NSE range.

4 Results and discussion

In this work we study the fluctuation dynamics of vesi-
cles made of different lipids and amphiphilic polymers. In
the case of lipid bilayers, we studied vesicles made of three
different phosphocholines with increasing melting temper-
ature, POPC (Tm = −2 ◦C), DMPC (Tm = 23 ◦C) and
SMPC (Tm = 30 ◦C). Since higher Tm indicates increas-
ing molecular cohesion, the bilayers of these three phos-
pholipids must become progressively stiffer [62]. At the ex-
perimental temperature, Texp = 25 ◦C, DMPC and POPC

form fluid bilayers, however, SMPC bilayers are in the gel,
solid-like, phase. In the following, the different systems are
discussed separately.

4.1 Fluid bilayers: DMPC and POPC

Figure 2A shows a typical cryo-TEM image of the vesicle
suspensions of DMPC prepared by extrusion. Although
the samples appear to be quite polydisperse (±15%, stand.
dev.), most vesicles are found unilamellar and spherical,
with an average size compatible with the pore size used
in extrusion (200 nm, nominal diameter). A residual pop-
ulation of smaller vesicle objects is systematically found
in all the preparations. The DLS results are displayed in
fig. 2B which shows the q-dependence of the translational
relaxation frequencies as obtained by CONTIN. A limiting
diffusional dependence ΓT = DT q2 is observed at low q’s
(q < q0 = 1/R ≈ 0.01 nm−1). The hydrodynamic dimen-
sions of the vesicles are calculated from the translational
diffusion coefficient, obtained as the limiting slope of the
linearized plot in fig. 2B. Using eqs. (5)-(6), we obtained
the hydrodynamic radius Rh = 90 ± 11 nm, in agreement
with the nominal size (Rnom = 100 nm). Above this limit
(at q � q0), the influence of the small vesicles (< R) be-
comes evident as a positive deviation towards faster fre-
quencies, indicating a higher diffusivity of the smaller ob-
jects. The NSE data are shown in fig. 2C. Above the melt-
ing transition (T = 25 ◦C > Tm ≈ 23 ◦C), DMPC mem-
branes are expected to exhibit a reduced rigidity charac-
teristic of the fluid phase. To fit the NSE relaxation pro-
files (see fig. 2C), we used the ZG expression in eq. (14)
with the value of DT obtained from the DLS data. The
fitted values of the relaxation frequencies of the bending
fluctuation term are shown in fig. 2D as a function of the
NSE wave vector. For comparison, the relaxation rates
of the master translational term are also shown in this
plot (dashed line in fig. 2D). The relative amplitudes ob-
tained from the fits are shown in fig. 2E. From our anal-
ysis, they only follow qualitatively the theoretical trends
expected from a bimodal fluctuation schemae. At low q’s
(< 0.5 nm−1; qR < 50), one observes the translational
component to be dominant (A > 0.5), with relaxation
frequencies relatively close to those of the shape fluctu-
ations. This fact clearly highlights the determinant role
of the translational component in NSE data, its adequate
account being absolutely mandatory for correct analysis.
In the present case, however, no quantitative agreement
is observed between the experimental amplitudes and the
MS theory (see fig. 2E), suggesting a more complicated
scenario with additional modes contributing to the NSE
signals, especially at high q’s. Indeed, above q > 0.5 nm−1,
the presence of hybrid modes [47,48] and/or thickness fluc-
tuations [51] in fluid bilayer membranes (this is DMPC at
T > Tm), could be strongly influential on the NSE in-
termediate relaxation function. These anomalies coincide
with the range where thickness fluctuations were detected
with DMPC vesicles in two different NSE instruments
(NG5-NSE at NIST and IN15 at ILL) [30]. The bimodal
bending/translation MS prediction is quantitative only at
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Fig. 2. A) CryoTEM image of DMPC vesicles obtained by
extrusion. B) Relaxation frequencies obtained from CONTIN
analysis of the DLS data. The error bars correspond to the
distribution widths ΔΓ/Γ . The positive deviation from the
q2-dependence is due to polydispersity contributions due to
faster motion of the smaller objects (at q > q0 = l/R). The
continuous line corresponds to the linear fit to the limiting
translational diffusion behavior, ΓT = DT q2. C) NSE data
(©: 0.282 nm−1, �: 0.454 nm−1, ♦: 0.723 nm−1,�: 0.913 nm−1,
�: 1.011 nm−1) with the lines corresponding to their respec-
tive fits to eq. (15) (DT fixed at the DLS value; β = 3/2).
The fitting parameters are plotted in D): relaxation frequen-
cies of the shape fluctuations, and E): amplitudes of transla-
tion, A, and internal mode corresponding to shape fluctuations,
1 − A. The lines correspond to theoretical predictions. In D)
the continuous line is the ZG frequency (κ = 20 ± 2kBT ) and
the dashed line is the relaxation frequency of the translational
mode extrapolated to the NSE domain (ΓT = DT q2, as inferred
from DLS data). In E) we plot prediction lines from MS theory
for translation (T dashed) and bending (B continuous) ampli-
tudes. F) ZG plot with the q3-dependence of the relaxation fre-
quencies of the bending contribution to the shape fluctuations.

low q (< 0.5 nm−1; see fig. 2E), an upper cut-off which
defines the range where the bending modulus can be cal-
culated with accuracy [30]. This is just the regime where
the relaxation frequencies of the fluctuation structure fac-
tor follows q3-scaling (see fig. 2D), a clear signature of
the bending-like character of the shape fluctuations. Us-

Fig. 3. A) CryoTEM image of POPC vesicles obtained by
extrusion. B) Relaxation frequencies obtained from CONTIN
analysis of the DLS data (symbols as in fig. 2). C) NSE data
with the fits, which yield the relaxation frequencies D), F) and
amplitudes of translation (©) and bending (�). F) Symbols
as in C) q = ©: 0.l19 nm−1, �: 0.558 nm−1, ♦: 0.830 nm−1,
�: 0.970 nm−1. Predictions lines as in fig. 2.

ing these five first points (q < 0.5 nm−1), the bending
stiffness can be accurately calculated from the q3-plot of
the ZG frequencies shown in fig. 2F. From this plot, the
value of κ is calculated from the slope of the linear fit to
eq. (11), obtaining κ = 20 ± 2 in kBT units. This value
is in good agreement with the literature data on DMPC
mechanics [16].

A similar behavior was observed for POPC vesicles.
Figure 3 reproduces previous DLS/NSE data obtained by
us with LUV suspensions [11, 12]. The influence of the
translational mode is obvious in view of the relative am-
plitudes in fig. 3E. In this case, however, a systematic neg-
ative deviation of the ZG frequencies is observed at high
wave vectors, q > 0.4 nm−1. Above this limit, a third con-
tribution was considered to account for the observed decay
of the NSE signal [39]. This was interpreted as the contri-
bution of hybrid modes to the fluctuation dynamics [39].
Indeed, at experimental conditions (T = 25 ◦C), POPC bi-
layers are expected to be slightly softer under compression
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and more fluid (KPOPC ≈ 100mN/m [63]; Tm = −2 ◦C)
than those of DMPC (KDMPC ≈ 140mN/m [64]; Tm =
23 ◦C). Furthermore, molecular disorder favors chain in-
terdigitation in unsaturated POPC with respect to twin
chains in fully saturated DMPC, promoting free-sliding
between the bilayers in the later case. Consequently, lower
relaxation rates are expected for the hybrid mode, ωH ≈
(K/8b)k2, in POPC than in DMPC bilayers. This could
explain why no evident dissipative signatures of hybrid
modes were detected in the NSE signals of DMPC [30] and
of other saturated phospholipids like DPPC, DSPC [30],
whereas clear evidence of hybrid dynamics was detected
in POPC bilayers [39]. Considering only the first five
points (q < 0.5 nm−1), where bending motions are ex-
pected to be dominant over hybrid modes [46], a reason-
able value of the bending stiffness κ = 21 ± 7kBT is ob-
tained from the fit of the ZG frequencies in the q3-plot
(see fig. 3F). This value is in agreement with literature
data. Indeed, the bending elasticity of POPC bilayers has
been extensively studied in micropipette experiments per-
formed on GUVs [64] and from X-ray experiments on the
lamellar LD phase [65] (κ ≈ 20kBT , at room tempera-
ture). Similarly to the case of DMPC, this elasticity as-
signs fluid membranes made of POPC with a rigid char-
acter, both, upon bending (κ ≈ 20kBT ) and compression
(K ≈ 100–140mN/m) [16,63,64].

4.2 Rigid solid-like bilayers: SMPC

The case of SMPC is particularly interesting. A solid-
like character is expected below its melting temperature
(Tm = 30 ◦C), forming gel bilayers at the experimental
conditions (T = 25 ◦C). The marked dissymmetry of the
two saturated chains (C18:0 stearoyl, myristoyl C14:0 PC)
favors a high chain interdigitation between the monolay-
ers. Consequently, at experimental conditions SMPC vesi-
cles are expected to behave as solid shells able to undergo
weak shape fluctuations by contrast to floppy vesicles with
a fluid membrane (case of DMPC and POPC in sect. 4.1).
The cryo-TEM images in fig. 4A clearly reveal the solid
character of SMPC vesicles. The presence of flat edges in-
dicates high membrane rigidity (see high-resolution inset
in fig. 4A), characteristic of solid-like membranes. A pure
diffusive behavior is observed in the DLS relaxation rates
(see fig. 4B), the data being perfectly described just by a
translational scaling over the whole range of studied wave
vectors. We plot in fig. 4C the NSE signals, which are
observed to decay significantly, at levels even lower than
observed in fluid POPC vesicles (see fig. 3C). Since ex-
tremely weak shape fluctuations are expected in a solid
membrane, undoubtedly, it is the translation component
that mainly contributes to these decaying signals. This is
clearly demonstrated by figs. 4D and E, where the dynami-
cal parameters are plotted as obtained from the fits to the
translation/bending structure factor (eq. (13)). The ZG
frequencies are found slower than for DMPC and POPC,
as expected for a more rigid membrane (ΓZG ∼ κ−1/2).
A higher rigidity causes indeed the characteristic frequen-
cies of the shape fluctuations to merge with the transla-

Fig. 4. A) CryoTEM image of SMPC vesicles obtained by
extrusion. The straight borders along the vesicles contours in-
dicate that they were in the gel state at room temperature be-
fore being vitrified. In the magnified inset the bilayer structure
of the membrane is visible. B) Relaxation frequencies obtained
from CONTIN analysis of the DLS data. The absence of the q2-
dependence observed in the other datasets is indicative of the
gel-state of vesicle membranes during measurement. C) NSE
data with the fits, which yield the relaxation frequencies D), F)
and amplitudes of translation (©) and bending (�) F). Sym-
bols in C) q = ©: 0.184 nm−1, �: 0.454 nm−1, ♦: 0.723 nm−1,
�: 0.913 nm−1. Predictions lines as in fig. 2.

tional frequencies (ΓZG → ΓT ; see fig. 4D). The bimodal
model is still able to split the two components, the trans-
lational one being clearly dominant except for the highest
wave vectors (see fig. 4E). In this case, a value of κ can
be still calculated from the ZG fluctuation frequencies.
A value κ = 124 ± 34kBT is obtained from the q3-plot
in fig. 4E. Similar high rigidities have been recently re-
ported from NSE experiments performed with other fully
saturated phospholipids below the melting transition [30].
In the present case, NSE measurements were performed
at 25 ◦C, only −5 ◦C below the melting transition of the
phospholipid (Tm = 30 ◦C). Upon solidification, the bend-
ing modulus of lipid bilayers is assumed to increase dras-
tically between a low value corresponding to the high-
temperature fluid phase (10–20kBT , typically) up to a
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much higher value in the gel/solid state, well below Tm.
However, such a structural stiffening is observed to oc-
cur in a broad temperature interval below Tm, where κ
increases smoothly [16]. For instance, in DPPC bilayers
(Tm = 41 ◦C), the transition region is so broad as −5 ◦C
below Tm, as observed by NSE experiments [66, 67]. The
value reported here for SMPC at 25 ◦C (κ = 124kBT ,
−5 ◦C below Tm), probably represents an intermediate
state in the transition region, mechanical softer than the
rigid solid at a temperature well below Tm. No trace of hy-
brid modes is detected in these solid-like systems, where
the high coupling between the monolayers prevents from
relative slippage and thus the coupling of transverse move-
ments to longitudinal motions.

4.3 Polymer membranes: soft L121 vs. rigid rubber

Aiming at an understanding of compact structureless
membranes, we measured NSE intermediate scattering
functions from diluted polymersome dispersions. Two am-
phiphilic polymer systems, able to form vesicles, were
considered: the triblock copolymer Pluronics L121 and
the diblock rubber PBD-PEO. The soluble Pluronic L121
is formed by a central, slightly hydrophobic, block of
polypropylenoxide (PPO) flanked by two small lateral
chains of the hydrophilic polyethilenoxide (PEO). The
rubbery copolymer, PBD-PEO is formed by a very hy-
drophobic block of polybutadiene (PBD) linked to a highly
flexible coil of soluble PEO. These two copolymers are
known to form stable vesicles (polymersomes) with ex-
treme rigidities and very different permeability to wa-
ter [68]. On one hand, L121 assembles as a floppy mem-
brane with a relatively low degree of chain entanglement
inside the hydrophobic core, thus being highly permeable
to water. On the other hand, PBD-PEO assembles into a
rubbery hydrophobic core which endows the system with
a frozen-like structure highly impermeable to water. In
both cases, relative motions between the two leaflets are
strongly hindered by a high degree of macromolecular en-
tangling thus behaving as a compact layer. These systems
were chosen to span a broad range of membrane stiffness
with a different molecular architecture; whilst phospho-
lipids can form soft or rigid bilayers with more or less
degree of sliding between the monolayers, block copoly-
mers self-assemble with a compact sheet structure with
these two leaflets fused together.

Figure 5A shows a cryo-TEM image of a diluted
suspension of L121 polymersomes. One finds highly de-
formable structures typical of very soft membranes (see
high-resolution inset in fig. 5A) with a high degree of
aggregation promoted by surface adhesion (see fig. 6).
The NSE signals show in this case significant relaxation
(fig. 5C). Data analysis using the bimodal model with the
ZG expression (eq. (13)) provides very high frequencies
for the shape fluctuations well separated from the transla-
tional component (see fig. 5D). The ZG frequencies follow
q3-scaling (see fig. 5E), as expected for membranes whose
elasticity is exclusively governed by pure-bending motions.
The analysis of the relaxation frequencies with eq. (13)

Fig. 5. A) CryoTEM image of vesicles formed from the triblock
polymer L121 by extrusion. The inset shows the magnification
of a floppy vesicle exemplifying the low bending rigidity of L121
membranes. B) Relaxation frequencies obtained from CONTIN
analysis of the DLS data. The positive deviation from the q2-
dependence is due to contributions of the bending mode as we
cross q0. C) NSE data with the fits, which yield the relaxation
frequencies D), F) and amplitudes of translation (©) and bend-
ing (�) F). Symbols in C) q = ©: 0.282 nm−1, �: 0.454 nm−1,
♦: 0.553 nm−1, �: 0.723 nm−1. Predictions lines as in fig. 2.
Doubled symbols in D)-F) correspond to parameters obtained
with different fits: ZG (β = 2/3; open symbols), MS (β = 1;
closed symbols).

provides a very low value κ = 0.03kBT , corresponding to
extremely soft-membrane behavior. Hence, the NSE data
were re-analyzed using the bimodal model with a single-
exponential profile for the fluctuation form factor (eq. (9)).
From the fits, new relaxation frequencies were obtained in
rough agreement with the ZG values (see fig. 5D). In this
case, the analysis of the q3-plot with eq. (3) provided a
value κ = 2±1kBT , which is more reasonable and in agree-
ment with previous dynamical experiments using flicker-
ing spectroscopy with giant vesicles [68, 69]. The relative
amplitudes in fig. 5E are found consistent between the
two methods. However, a dominance of the translational
component, higher than theoretically expected, is revealed
from the experimental values. This could be related to the
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Fig. 6. Series of CryoTEM images of samples taken from the same L121 preparation and vitrified at increasing times after
extrusion (A) immediately after; B) after 1 h; C) after 4 h). As time progresses the vesicles become increasingly agglomerated
and fuse together to form ever larger vesicles in the aggregates.

high polydispersity of sizes and shapes characteristics of
these polymersome samples. Figure 6 shows a gallery of
images of the same L121 sample which was subjected to
cryo-fixation at progressive longer times. The presence of
large aggregates of adhered polymersomes is evident with
time, which could explain a progressive dominance of the
translational component.

The results for the rigid PBD-PEO copolymer are
shown in fig. 7. The cryo-TEM images in fig. 7A reveal
the existence of rubbery membranes, thicker and denser
than those found for L121 [68, 69]. In this case, no vesi-
cle adhesion is observed in the microscopy images. De-
viations with respect to the diffusional translation limit
are observed in the DLS frequencies (see fig. 7B), which
suggest a relevant contribution from the shape fluctua-
tion modes. This influence is evident after the analysis of
the NSE relaxation curves in fig. 7C. The bimodal trans-
lation/bending model reveals two separated components
with amplitudes compatible with theory (see fig. 7E). At
low q’s, the ZG frequencies are found close to the trans-
lational component but compatible with q3-scaling (see
fig. 7D). However, a sudden rise up to a much faster regime
is detected at q > qh ≈ 0.5 nm−1. For the calculation
of the bending modulus only the first five points below
qh were considered within the ZG equation (eq. (11)). A
value κ = 46 ± 22kBT was obtained from the q3-plot in
fig. 7F, in agreement with literature data obtained for gi-
ant polymersomes of this polymer using flickering spec-
troscopy [69] and micropipette aspiration [70]. The devia-
tion that we observe in fig. 7D corresponds to a very local-
ized excursion at a wavelength around λ=2π/qh ≈ 12 nm,
compatible with the membrane thickness [39], which reg-
isters as an enhancement rather than a suppression of the
q3-dependence. A similar excess in dynamics at the mem-
brane thickness length scale has been interpreted by Na-
gao and collaborators [30, 71, 72] as the signature of the
transversal fluctuations in membrane thickness. Such a
kind of peristaltic pumping is expected to drive a shift in

the frequencies of the bending mode as

Γ
(h)
B = ΓB +

(
q

qh

)3
Γper

1 + (q − q0)2ξ−2
, (15)

where Γ
(h)
B indicates the renormalized decay rate of the

bending fluctuations and Γper represents the decay rate
due to the thickness fluctuations, leading to the excess
dynamics observed at qh. ξ is a characteristic distance of
the order of the amplitude of the thickness fluctuation.
Thickness fluctuations should be controlled by geomet-
rical constraints, such as volume conservation. Similarly
to the thickness fluctuations found in surfactant mem-
branes [71], the average amplitude was estimated to be
ξ ≈ 1 nm, approximately 10% of the membrane thickness.
A prediction for qh = 0.5 nm−1, Γper = 2 · 107 s−1 and
ξ = 1nm is plotted in fig. 7D, in close agreement with
experimental observation. The computed relaxation time
of the thickness fluctuation, τ = 1/Γper, is on the order of
50 ns, longer than the few nanoseconds estimated in sur-
factant membranes [25, 72], but compatible with the idea
of a entangled hydrophobic core with a slow relaxation of
the rubbery internal modes.

5 Conclusions

From the NSE data reported here, the presence of shape
fluctuations concomitant with a master translational com-
ponent has been clearly evidenced in diluted suspensions
of unilamellar vesicles made of different lipids and am-
phiphiles. The two components can be unfolded from the
intermediate scattering function using a bimodal exponen-
tial decay (eq. (14)) with a fluctuation term as a stretched
exponential. This is compatible with the Zilman-Granek
theory which provides the adequate theoretical frame for
describing the relaxation rate of the shape fluctuations
of rigid membranes which are driven by a combination
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Fig. 7. A) CryoTEM image of vesicles formed from the rub-
bery polymer PBD-PED by extrusion. B) Relaxation frequen-
cies obtained from CONTIN analysis of the DLS data. The
positive deviation from the q2-dependence is due to contribu-
tions of the shape fluctuations as we cross q0. C) NSE data
with the fits, which yield the relaxation frequencies D), F)
and amplitudes of translation (©) and bending (�) F). Sym-
bols in C) q = ©: 0.234 nm−1, �: 0.330 nm−1, ♦: 0.454 nm−1,
�: 0.553 nm−1. Predictions lines as in fig. 2. The dash-dotted
line in D) corresponds to the dynamic increase predicted from
thickness fluctuations (see eq. (15) and discussion therein).

of pure-bending modes. The fluctuation component, scal-
ing as ∼ q3, is found usually faster than the translational
one which varies as ∼ q2. This dynamic separation en-
ables adequate unfolding of the two components through
classical minimization methods. The higher the bending
rigidity, the slower the relaxation rate of the bending com-
ponent (ΓZG ∼ κ−1/2) which could eventually collapse
within the translational process. In these cases, precise
knowledge of the relative amplitudes of the two compo-
nents should be determinant for accurate determination
of the bending modulus from the ZG frequencies. From
the ZG analysis, which is essentially equivalent to the com-
plete MS description, values of the bending stiffness can be
obtained using the adequate range of experimental wave
vectors where additional modes of curvature motion do
not have a relevant role yet. Shape fluctuations in vesi-

cles with a low rigidity (κ ≈ kBT ), however, could be
treated using the single-mode scheme. Such an experimen-
tal feature, early reported from NSE experiments in soft
microemulsion phases [21], is still awaiting further the-
oretical explanation. We can conclude therefore that the
ZG theory represents the adequate formalism to probe dy-
namic relaxation in rigid bilayers, where curvature modes
are inefficient in exploring the bulk medium for adequate
dissipation. The MS theory captures all the essential dy-
namical features of fluctuating membranes, however, in its
simplified form as a single exponential (eq. (9)) it fails to
describe relaxation involved in NSE signals of rigid mem-
branes. However, the complete MS theory, through the
equivalent ZG structure factor obtained under the contin-
uous planar modes approximation, might be the method
of choice to interpret NSE signals with spherical vesicles.
In either of the two cases, rigid or floppy, a proper con-
sideration of the translational component and of possible
modes of curvature motion alternative to bending fluctua-
tions is essential for an adequate calculation of the bending
modulus. However, whereas precise account of the relax-
ation profile of the pure-bending component is provided
by the ZG theory, a similar approach for other modes of
shape fluctuation is still lacking. Therefore, and trying
to answer the question posed in the title of this article,
we can assert that taking the appropriate considerations,
NSE is adequate to assess the bending stiffness of biologi-
cal membranes, although additional components of mem-
brane mechanics could eventually contribute to shape the
intermediate scattering function.
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