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Abstract: Mangiferin is a natural glucosyl xanthone with antioxidant and anti-inflammatory ac-
tivity, making it suitable for protection against cutaneous diseases. In this study ethosomes and
transethosomes were designed as topical delivery systems for mangiferin. A preformulation study
was conducted using different surfactants in association with phosphatidylcholine. Vesicle dimen-
sional distribution was monitored by photon correlation spectroscopy, while antioxidant capacity
and cytotoxicity were respectively assessed by free radical scavenging analysis and MTT on HaCaT
keratinocytes. Selected nanosystems were further investigated by cryogenic transmission electron
microscopy, while mangiferin entrapment capacity was evaluated by ultracentrifugation and HPLC.
The diffusion kinetics of mangiferin from ethosomes and transethosomes evaluated by Franz cell
was faster in the case of transethosomes. The suitability of mangiferin-containing nanovesicles in the
treatment of skin disorders related to pollutants was investigated, evaluating, in vitro, the antioxidant
and anti-inflammatory effect of ethosomes and transethosomes on human keratinocytes exposed to
cigarette smoke as an oxidative and inflammatory challenger. The ability to induce an antioxidant
response (HO-1) and anti-inflammatory status (IL-6 and NF-kB) was determined by RT-PCR and
immunofluorescence. The data demonstrated the effectiveness of mangiferin loaded in nanosystems
to protect cells from damage. Finally, to gain insight into the keratinocytes’ uptake of ethosome
and transethosome, transmission electron microscopy analyses were conducted, showing that both
nanosystems were able to pass intact within the cells.

Keywords: ethosomes; transethosomes; mangiferin; franz cell; antioxidants

1. Introduction

Mangiferin (MG) is a natural glucosyl xanthone found in both mango and papaya,
possessing many pharmacological activities, such as hepatoprotective, anticarcinogenic,
antidiabetic, and antiviral action against herpes simplex virus and poliovirus [1–4]. No-
tably, MG exerts potent antioxidant, antiapoptotic, and anti-inflammatory properties as
demonstrated in various cell and animal models [5,6]. MG downregulates TNF-α ex-
pression under several conditions by suppressing NF-κB activity, a key pathway in an
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inflammatory reaction, which can be significantly induced by TNF-α [7]. Its ability to
antagonize inflammatory reactions makes MG suitable for protection against cutaneous dis-
eases such as contact dermatitis and psoriasis [8]. Moreover, MG could act as an anti-aging
agent due to its ability to not only counteract reactive oxygen species (ROS) production
induced by different challenges including UV exposure, but also to inhibit cutaneous
collagenase and elastase activity [9]. Nonetheless, due to its scarce solubility in water and
low bioavailability, MG requires specialized delivery systems that can entrap the molecule
in a physiological environment and protect it against oxidative degradation.

An interesting technological strategy for MG application and delivery through the
skin can be its loading in lipid-based nanovesicular systems. Particularly, ethosomes (E)
are biocompatible nanovesicular systems based on phosphatidylcholine (PC), ethanol,
and water, suitable for drug delivery across the skin. Indeed, ethosomal dispersions
can solubilize lipophilic molecules in a double-layer phospholipid matrix, with high
affinity with the biological membranes [10]. The peculiarity of E with respect to the
classic liposomes is related to the presence of ethanol (20–45%) that improves the vesicle
stability and the entrapment capacity of lipophilic drugs, enhancing the vesicle penetration
potential [11]. Recent studies have demonstrated a transdermal potential ascribable to the
penetration-enhancing synergistic properties of both PC and ethanol. Indeed, the E vesicle
can cross the stratum corneum barrier due to the chemical affinity of PC with the stratum
corneum lipids and to the ability of ethanol to perturb their organization, finally, allowing
the transdermal passage of drugs through the skin [12–14]. Recent advances in vesicle
nanotechnology led to the development of transethosomes (TE) that can be considered as a
new generation of E, being vesicular systems, whose composition, mainly based on PC,
ethanol, and water, is implemented by surfactants, employed as edge activators [15–17].
In TE the presence of surfactants added to PC might change the packing characteristics
of the bilayer, leading to vesicles even more flexible than E [18]. Due to their remarkable
transdermal potential, both E and TE can be proposed for the delivery of specific drugs for
the treatment of several cutaneous pathologies [16,17].

The cutaneous tissue is continuously exposed to many exogenous stimuli, such as
pollution, UV radiation, or oxidative compounds, including the ones derived from cigarette
combustion [19–21]. The skin possesses non-enzymatic and enzymatic molecules, acting as
potent antioxidants or oxidant-degrading systems. Nonetheless, under external stressors,
skin defense mechanisms may not be powerful enough to counteract the deleterious effects
of toxicants, leading to an increase of ROS in the skin, which can induce the development
of dermatological diseases. For instance, the potent carcinogens contained in cigarettes
cause various dermatological pathologies and disorders, such as squamous cell carcinoma,
melanoma, psoriasis, atopic dermatitis eczema, acne, and skin aging, besides several
chronic systemic diseases [22,23]. Indeed, cigarette smoke components can even pass
through the epidermal barrier, readily penetrate skin cells, and reach the blood circulation,
provoking systemic effects [24]. In the skin, these toxic compounds can (i) affect cellular
redox homeostasis, (ii) influence keratinocyte proliferation and differentiation, and (iii)
induce inflammatory responses. Given these assumptions, the administration of natural an-
tioxidants through the skin represents an interesting strategy in the prevention or treatment
of cutaneous ROS-mediated disorders. Recently, viscous glycerol-ethanol phospholipid
nanosystems loaded with MG were proposed for the treatment of psoriasis [25]. The idea
behind the present investigation is to evaluate the delivery of MG into the skin by E and TE
for the eventual treatments of cutaneous disorders. Particularly, the first part of the work
relies on a formulative study to select the composition suitable for MG entrapment. In the
second part, the anti-inflammatory and antioxidant potential of selected nanosystems is
studied in human keratinocytes exposed to cigarette smoke, while the uptake of E and TE
in keratinocytes is evidenced by transmission electron microscopy (TEM).
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2. Materials and Methods
2.1. Materials

Mangiferin, Mangifera indica, 1,3,6,7-Tetrahydroxyxanthone C2-β-D-glucoside (MG),
polyoxyethylenesorbitan monolaurate, polysorbate 20 (TW20), polyoxyethylenesorbitan
monooleate, polysorbate 80 (TW80), sorbitan monolaurate (SP20), sorbitane monooleate
(SP80), dimethyldidodecylammonium bromide (DDAB), 2,2-Diphenyl-1-picrylhydrazyl
(DPPH), nylon, mixed cellulose esters (MCE), and polytetrafluoroethylene (PTFE) mem-
branes (diam. 25 mm, pore size 0.2 µm) were purchased from Merck, Sigma-Aldrich (Santa
Louis, MO, USA). The soybean lecithin (90% phosphatidylcholine) (PC) was Epikuron 200
from Lucas Meyer, Hamburg, Germany. Solvents were HPLC grade and all other chemicals
were analytical grade.

2.2. Mangiferin Solubility Evaluation

MG solubility was determined by saturating solvents (i.e., water, ethanol, methanol,
ethanol/methanol 50:50, v/v, dimethyl sulfoxide, dimethyl sulfoxide/ethanol, 20:80, v/v,
and propylene glycol/water 60:40, v/v) with an excess of the drug. The obtained saturated
solutions were horizontally shaken at 150 rpm for 1 h in the dark at 25 ◦C. Afterward, 1 mL
was withdrawn and filtered through a nylon filter membrane, 0.22 µm pore size, 25 mm
diameter (Millipore-Sigma-Aldrich Merck, Darmstadt, Germany). MG concentration was
determined by high-performance liquid chromatography (HPLC) analyses with the method
below described.

2.3. Production of Ethosomes and Transethosomes

For the preparation of E and TE, PC (30% w/w) was solubilized in ethanol at 30 ◦C.
Afterward, bidistilled water was slowly added to the ethanolic solution up to a final
70:30 (v/v) ratio, under continuous magnetic stirring at 750 rpm by an IKA Eurostar
digital (IKA Labortechnik Janke & Kunkel, Staufen, Germany) at 22–25 ◦C. Magnetic
stirring was maintained for 30 min in the dark [26]. In the case of TE, the surfactants
TW80, TW20, SP20, or SP80 were alternatively added to the PC ethanol solution, up to final
surfactant concentrations 0.1–0.6% w/w, before adding water. MG containing E or TE, were
prepared by solubilizing the drug (3.3 mg/mL) in the PC ethanol solution (E-MG) or in the
surfactant PC ethanol solution (TE-MG) before the addition of water, obtaining a final MG
concentration of 1 mg/mL.

2.4. Photon Correlation Spectroscopy (PCS)

The size distribution of vesicles was evaluated using a Zetasizer Nano S90 (Malvern
Instr., Malvern, UK) with a 5 mW helium-neon laser and a wavelength output of 633 nm.
Measurements were performed at 25 ◦C at a 90◦ angle and a run time of at least 180 s.
Samples were diluted with bidistilled water in a 1:10 v/v ratio. Data were analyzed by the
“cumulant” method [27]. Measurements were conducted thrice during 3 months after E
and TE production. Zeta potential values were acquired by measuring the electrophoretic
mobility according to the Helmholtz–Smoluchowski equation [28].

2.5. Cell Culture and Cytotoxicity Study

HaCaT cells were cultured in high glucose Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with 10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin.
All cell cultures were performed at 37 ◦C in 5% CO2 and 95% air. Keratinocytes were grown
in 96-well plates at a density of 2 × 104 cells/well in 200 µL of media for MTT assay and in
6 cm2 Petri dishes at a density of 1.5 × 106 cells in 3 mL of media for real-time PCR. Seeded
cells were exposed to unloaded and MG-loaded formulations at various MG concentrations,
ranging from 5 to 50 µM, for 24 h. After complete removal of the treatment to avoid any
color interference, 50 µL of serum-free media and 50 µL MTT (0.5 mg/mL) were added
and incubated for 3 h. The insoluble purple formazan crystals were then dissolved in
100 µL of DMSO at 37 ◦C for 15 min. After shaking, the solution absorbance was measured
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with a spectrophotometer at 590 nm, using 670 nm as a reference wavelength, and, thus,
converted into a percentage of viability [29].

2.6. Mangiferin Content of Ethosomes and Transethosomes

The entrapment capacity (EC) of MG in E-MG and TE-MG has been determined by
ultracentrifugation and HPLC analyses; specifically, 500 µL samples were loaded in a
centrifugal filter (Microcon centrifugal filter unit YM-10 membrane, NMWCO 10 kDa,
Sigma-Aldrich, St. Louis, MO, USA) and subjected to ultracentrifugation (Spectrafuge™
24D Digital Microcentrifuge, Woodbridge, NJ, USA) at 4000 rpm for 15 min. One hundred
microliters of E-MG or TE-MG in the supernatant were diluted with 900 µL of dimethyl
sulfoxide and maintained under magnetic stirring for 30 min [30], while the filtered aqueous
phase of E-MG and TE-MG was simply withdrawn from the lower part of the centrifugal
filter unit. After filtration of the lipidic and aqueous phases by nylon syringe filters
(0.22 µm pores), the amount of MG was quantified by HPLC, as above reported. The EC
was determined as follows:

EC = MG/TMG × 100 (1)

where MG corresponds to the amount of the drug measured by HPLC and TMG is the total
amount of MG employed for E-MG and TE-MG production.

2.7. Antioxidant Activity (2,2-Diphenyl-1-Picrylhydrazyl Assay)

MG-loaded E and TE were tested to evaluate the scavenging activity of DPPH radicals
in accordance with a previously described modified procedure [31]. This in vitro radical-
scavenging assay is widely used for a quick assessment of antioxidant capacity and is
particularly ideal for phenolic compounds. The DPPH test can evaluate the ability of an
antioxidant substance to donate hydrogen to convert the stable free radical DPPH into
1,1-diphenyl-2-picrylhydrazyl. This reaction is accompanied by a colorimetric variation
(from deep purple to yellow if the tested substance reacts with the radical) which can be
monitored by UV spectrophotometer (UV-31 SCAN ONDA, Sinergica, Milano, Italy) at
517 nm. The radical inhibition percentage is calculated using the following equation:

DPPH radical-scavenging capacity (%) = [1 − (A1 − A2)/A0] × 100% (2)

where A0 was the absorbance of the control (without sample), A1 was the absorbance in
the presence of the sample, and A2 was the absorbance without DPPH.

Seven hundred and fifty microliters of each sample (E-MG, TE-MG, or MG solution)
diluted in EtOH-DMSO (80:20, v/v) at different concentrations were added to the DPPH
ethanolic solution (1.5 mL) and the absorbance was measured by UV-Vis spectrophotometer.
The IC50 values were calculated from the results, determined by regression analysis of the
results obtained at different sample concentrations, and expressed as µg/mL.

2.8. Cryo-Transmission Electron Microscopy (Cryo-TEM)

In order to vitrify samples, a 2 µL droplet was put on a lacey carbon-filmed copper
grid (Science Services, Munich, Germany) for 30 s [32]. Subsequently, blotting paper was
used to remove most of the liquid, resulting in a thin film stretched over the lace holes.
The specimens were instantly shock frozen by rapidly immersing them into liquid ethane
cooled to approximately 90 K by liquid nitrogen in a temperature-controlled freezing unit
(Zeiss Cryobox, Carl Zeiss Microscopy GmbH, Jena, Germany). All the steps of sample
preparation were conducted at a controlled temperature. After specimen freezing, the
remaining ethane was removed by blotting paper. The vitrified specimen was then trans-
ferred to a Zeiss/Leo EM922 Omega EFTEM (Zeiss Microscopy GmbH, Jena, Germany)
transmission electron microscope using a cryoholder (CT3500, Gatan, Munich, Germany).
The temperature of samples was maintained below 100 K during the examination. Spec-
imens were examined with reduced doses of about 1000–2000 e/nm2 at 200 kV. Images
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were recorded by a CCD digital camera (Ultrascan 1000, Gatan, Munich, Germany) and
analyzed using a GMS 1.9 software (Gatan, Munich, Germany).

2.9. In Vitro Diffusion Experiments

Franz cells associated with nylon, MCE, or PTFE membranes (pore size 0.2 µm)
were employed to evaluate the diffusion of MG. Namely, the membranes were hydrated
in distilled water for 1 h before being placed in Franz-type diffusion cells produced by
Vetrotecnica (Padova, Italy) [33]. The membrane surface area exposed to diffusion was
0.78 cm2 (1 cm diameter orifice). Franz cells consisted of a lower receptor compartment and
an upper donor compartment sealed to avoid evaporation during the experiments. Five
milliliters of bidistilled water or ethanol/water (30:70 or 50:50, v/v) mixture was poured
into the lower section, stirred at 500 rpm by a magnetic bar, and maintained at 32 ± 1 ◦C
during all the experiments [34]. Roughly 1 g of MG containing dosage form was placed
in the donor compartment on the membrane surface. Namely, MG solution (0.7 mg/mL)
in ethanol/water (30:70 v/v) (Sol-MG), E-MG (1 mg/mL) or TE-MG (1 mg/mL) were
employed. Two hundred microliters of receptor phase were withdrawn at predetermined
time intervals (0.5–6 h) and analyzed for MG content by HPLC as reported below. Each
removed sample was replaced with an equal volume of simple receptor phase. The
concentrations of MG were determined six times in independent experiments. The mean
values ± standard deviations were calculated and plotted as a function of time. From the
linear portion of the accumulation curve, the fluxes were obtained, referring to the slopes
of the regression line (angular coefficient). Diffusion coefficients were calculated according
to Equation (3).

D = F/[MG] (3)

where D is the diffusion coefficient, F is the flux, and [MG] is the MG concentration in the
dosage form, expressed in mg/mL.

2.10. HPLC Analysis

HPLC analyses were performed by a two-plunger alternative pump (Agilent Tech-
nologies 1200 series, Santa Clara, CA, USA), a UV-detector operating at 254 nm, and a
7125 Rheodyne injection valve with a 50 µL loop. A stainless-steel C-18 reverse-phase
column (15 × 0.46 cm) packed with 5 µm particles (Platinum C18, Apex Scientific, Alltech,
KY, USA) was eluted with a mobile phase containing methanol/water 60:40 v/v, pH 4.0 at
a flow rate of 1 mL/min.

2.11. Cigarette Smoke (CS) Exposure

HaCaT cells were pre-treated with unloaded or MG-loaded formulations, using the
MG concentration selected by cytotoxicity studies. After 24 h, cells were exposed to
cigarette smoke (CS) for 40 min, using 1 research cigarette (12 mg tar, 1.1 mg nicotine). CS
was generated by a vacuum pump that could burn the research cigarette, as previously
described [35]. Untreated cells were exposed to filtered air to compare the damage of
CS, while untreated cells exposed to CS were used as control. After exposure, the culture
medium was changed, and the cells were incubated at 37 ◦C in a humidified 5% CO2
atmosphere. Then, RNA was collected at different time points (i.e., 2 h and 6 h post-
exposure) as reported below [36].

2.12. RNA Extraction and Quantitative Real-Time PCR

For RNA extraction of HaCaT cells, total RNA was extracted following the phenol-
chloroform extraction protocol described by Toni et al. [37], adopting some modifications.
Briefly, HaCaT cells were washed twice with PBS and then suspended in 500 µL of Pure-
ZOL™ RNA Isolation Reagent (Biorad, Hercules, CA, USA). After adding 100 µL of
chloroform, the different organic phases were separated by centrifuging the cell suspension
at 12,000 rpm for 15 min at 4 ◦C. The upper aqueous phase containing RNA was collected in
new Eppendorf tubes. After repeating the chloroform step twice, 250 µL of methanol was
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added to the aqueous phase containing RNA to precipitate the RNA pellet by centrifuging
at 12,000 rpm for 10 min at 4 ◦C. The RNA pellet was washed 3 times in 1 mL of 75% ethanol
centrifuging at 12,000 rpm for 10 min at 4 ◦C. The Eppendorf tubes were left open at RT for
3–5 min to evaporate ethanol and then the RNA pellet was suspended in 25 µL of nuclease-
RNAse-free water. RNA concentration was measured using the Shimadzu BioSpec-nano
spectrophotometer (Shimadzu Biotech, Duisburg, Germany). Next, cDNA was generated
from 1 µg of total RNA, using the iScript cDNA Synthesis Kit (Biorad, Hercules, CA, USA).
To evaluate the mRNA levels of HO-1 and IL-6 genes, quantitative real-time PCR was
performed using SYBR® Green Master Mix (Biorad, Hercules, CA, USA) on a CFX Connect
Real-Time PCR System (Biorad, Hercules, CA, USA) following the manufacturer’s protocol.
Gene expression was quantified by obtaining the number of cycles to reach a predeter-
mined threshold value in the intensity of the PCR signal (CT value). As the reference, gene
RPL11 was used, while samples were compared using the relative cycle threshold (CT).
After normalization, quantitative relative gene expression was calculated by the 2−∆∆Ct
method [38]. Primer sequences used for analysis of gene expression are as follows: HO-1
fwd, TTGCTTTGGCGAGCTCTTTT; HO-1 rev, TCTGATGCCAAAACACCCCA; IL-6 fwd,
TAGGACTGGAGATGTCTGAGGCT; IL-6 rev, GACCGAAGGCGCTTGTGGA; RPL11 fwd,
ACTTCGCATCCACAAACTCT; RPL11 rev, TGTGAGCTGCTCCAACACCTT.

2.13. Immunocytochemistry

HaCaT cells were grown on coverslips at a density of 1 × 105 cells/mL. After 24 h
of pre-treatment with unloaded or MG-loaded formulations, cells were exposed to CS
as above described, and analyzed 1 h post-exposure. Afterward, cells were fixed in 4%
paraformaldehyde for 10 min at 22–25 ◦C. After cell permeabilization at 22–25 ◦C for 5 min
with PBS containing 0.2% Triton X-100, the coverslips were blocked in PBS containing
1% BSA for 1 h. Then, the cells were incubated overnight with primary antibody for
NF-kB (8242, Cell Signaling, Danvers, MA, USA) 1:400, in PBS containing 0.5% BSA
at 4 ◦C. Coverslips were washed and incubated with appropriate secondary antibody
(1:100) for 1 h at RT. Nuclei were stained with 1 µg/mL DAPI (Sigma-Aldrich, Merck,
Darmstadt, Germany) for 1 min. Coverslips were mounted onto glass slides using anti-fade
mounting medium 1,4 diazabicyclooctane (DABCO) in glycerin and examined by a Leica
light microscope equipped with epifluorescence at 40× magnification. Negative controls for
the immunostaining experiments were processed omitting the primary antibody. Images
were acquired and analyzed with Leica software [30,39].

2.14. Transmission Electron Microscopy

Cells treated with E or TE for 24 h were fixed with 2.5% (v/v) glutaraldehyde and 2%
(v/v) paraformaldehyde in 0.1 M phosphate-buffered, pH 7.4, for 2 h at 4 ◦C. Cells were then
post-fixed with 1.5% potassium ferrocyanide and 1% osmium tetroxide for 1 h, dehydrated
with acetone, and embedded in Epon resin [40]. Ultrathin sections were observed using
a Philips Morgagni transmission electron microscope (FEI Company Italia S.r.l., Milan,
Italy) operating at 80 kV and equipped with a Megaview II camera for digital image
acquisition. All images were processed using Paint Shop Pro software (JASC Software Inc.,
Eden Praire, MN, USA).

2.15. Statistical Analysis

All statistical analyses have been calculated by repeated-measures analysis of variance
(ANOVA) and the Dunnett comparison procedure. The software Prism 6.0, Graph Pad
Software Inc. (La Jolla, CA, USA) has been employed. Probability values (p) less than 0.05
were regarded significant in this study.
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3. Results and Discussion
3.1. Preparation and Characterization of Ethosomes and Transethosomes

To design a nanotechnological formulation suitable for MG delivery through the skin,
a preliminary screening was performed, evaluating the drug solubility in different solvents
and solvent mixtures. The results reported in Table 1, show very slight solubility values,
the highest of which was in the case of dimethyl sulfoxide.

Table 1. Mangiferin solubility in different solvents and solvent mixtures.

Solvents MG Solubility (mg/mL)

Water 0.11 ± 0.01
Ethanol 0.72 ± 0.01

Methanol 0.20 ± 0.02
Ethanol/Methanol, 50:50 (v/v) 0.21 ± 0.00

Dimethyl sulfoxide 4.00 ± 0.10
Dimethyl sulfoxide/Ethanol, 20:80 (v/v) 1.00 ± 0.07

Propylene glycol/Water, 60:40 (v/v) 0.30 ± 0.04

Despite its solubilizing power, dimethyl sulfoxide causes burning, itching, and strong
allergic reactions on contact with the skin, while ethanol is more acceptable and non-
toxic when topically applied [41,42]. Therefore, E and TE were chosen to investigate MG
delivery, because they are nanosystems based mainly on ethanol, water, and PC, which is a
glycerophospholipid that possesses penetration enhancer properties due to its high affinity
with stratum corneum components [43]. Thanks to the solubilizing power of PC, MG
solubility reached 3.3 mg/mL in PC ethanolic solution (3% w/v). On this basis, a formulative
study was conducted, using PC in the case of E, or different surfactants in association with
PC in the case of TE. Particularly, E was prepared by slow addition of water to a PC ethanol
solution under stirring, resulting in milky and homogeneous E dispersions whose final PC
concentration was 0.9% w/v. This concentration was selected based on a previous study
demonstrating its suitability to adequately entrap lipophilic drugs, while maintaining the
vesicle size stability [30]. TE dispersions were similarly obtained solubilizing surfactants in
the PC solution before the addition of water. Particularly, hydrophilic (TW20 and TW80)
and lipophilic (SP20 and SP80) non-ionic surfactants were employed, as well as the cationic
DDAB, as reported in Table 2.

Table 2. Composition of ethosomes and transethosomes.

Formulation PC 1

% w/w
Ethanol
% w/w

TW80
2

% w/w
TW20

3

% w/w
SP80

4

% w/w
SP20

5

% w/w
DDAB 6

% w/w
MG 7

% w/w
Water

% w/w

E 0.9 29.1 - - - - - - 70
E-MG 0.9 29.1 - - - - - 0.1 69.9
TE1 0.89 28.81 - 0.3 - - - - 70
TE2 0.89 28.81 - - - 0.3 - - 70
TE3 0.89 28.81 - - 0.3 - - - 70
TE4 0.89 28.96 0.15 - - - - - 70
TE5 0.89 28.81 0.3 - - - - - 70
TE6 0.89 28.51 0.6 - - - - - 70
TE7 0.9 29.1 - - - - 0.1 - 69.9
TE8 0.9 29.1 - - - - 0.2 - 69.8
TE9 0.9 29.1 - - - - 0.3 - 69.7

TE5-MG 0.9 29.1 0.3 - - - - 0.1 69.6
TE8-MG 0.9 29.1 - - - - 0.2 0.1 69.7

1: phosphatidyl choline; 2: polysorbate 80; 3: polysorbate 20; 4: sorbitane monooleate; 5: sorbitan monolaurate; 6: dimethyldidodecylammo-
nium bromide; 7: mangiferin.
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The cationic surfactant DDAB was employed to confer a positive charge to vesicles,
to possibly enhance their cutaneous permeation properties, by electric attraction with the
negatively charged skin surface. In all cases, TE homogeneous dispersions were obtained,
which were milky in the case of TE2 and TE3, translucent in the case of TE1–TE6, and
almost transparent in the case TE7–TE9 (Supplementary Figure S1). Indeed, the presence
of TW80 or DDAB resulted in dispersions whose transparency was directly proportional to
the surfactant concentration. The influence of composition on vesicle size distribution was
studied by PCS (Table 3). Surfactants are thought to intercalate with the vesicle lipid bilayer,
rearranging it, thus, affecting the vesicle mean diameter, as a function of the type and
concentration of employed surfactant [18]. Z-Average mean diameters spanned between 82
and 411 nm, while dispersity indexes were lower than 0.2, indicating a homogeneous size
distribution, mostly characterized by the presence of one peak. The largest mean diameters
were found in the case of TE1 and TE2, produced in the presence of TW20 and SP20, while
the smallest were found in TE7–TE9, produced in the presence of DDAB. In the case of
TE4–TE6 and TE7–TE9, as expected, the higher the surfactant concentration, the lower the
mean diameter.

Table 3. Dimensional distribution parameters of ethosomes and transethosomes, as determined by PCS.

Formulation
Z-Average (nm) ±

s.d. (nm)
Typical Intensity Distribution Dispersity Index

± s.d. (nm)
Z Potential ± s.d.

(nm)nm Area %

E 206.3 ± 33.13 260.7
5065

99.5
0.5 0.146 ± 0.04 −23.39 ± 0.2

TE1 294.25 ± 2.33 318.35
4974

99.3
0.7 0.120 ± 0.01 −10.55 ± 0.4

TE2 411.1 ± 13.72 421.85
4929

99
1 0.177 ± 0.02 −13.45 ± 0.2

TE3 287.2 ± 9.47 288.1 100 0.052 ± 0.03 −18.11 ± 0.4
TE4 288.8 ± 11.31 289.2 100 0.068 ± 0.01 −16.90 ± 0.5
TE5 186.2 ± 20.29 187.0 100 0.131 ± 0.05 −33.56 ± 0.3
TE6 158.1 ± 2.12 159.2 100 0.122 ± 0.02 −14.23 ± 0.5
TE7 127.45 ± 8.84 129.0 100 0.155 ± 0.04 60.53± 0.4
TE8 98.82 ± 0.22 99.2 100 0.103 ± 0.02 67.35 ± 0.5
TE9 82.87 ± 8.89 83.2 100 0.082 ± 0.02 71.92 ± 0.6

E-MG 189.8 ± 13.46 178.8
5049

99.6
0.4 0.134 ± 0.02 −20.58 ± 0.3

TE5-MG 169.3 ± 0.46 168.7 100 0.132 ± 0.02 −28.29 ± 0.4
TE8-MG 86.41 ± 1.09 87.2 100 0.198 ± 0.01 84.08 ± 0.6

s.d.: standard deviation.

In order to predict the stability of E and TE, the zeta potential was evaluated because
this parameter reflects the degree of repulsion between the vesicles in the dispersion. In
the case of E, zeta potential values, reported in Table 3, were negative, due to the presence
of ethanol, which provides a negative charge on the vesicle surface [44]. Conversely, in the
case of TE7–TE9, the cationic surfactant presence conferred a positive charge to the vesicle
surface, leading to the highest positive zeta potential values in terms of absolute values.
Notably, TE7–TE9 showed the lowest mean diameters since the electric repulsion of these
highly charged vesicles prevented aggregation phenomena. On the other hand, TE1–TE4
and TE–6 produced in the presence of T20, SP20, SP80, and T80 0.6% displayed negative
zeta potential values, with the lowest absolute values. In these latest cases, it is likely that
the attraction of the vesicles could overcome repulsion, possibly leading to aggregation
phenomena over time.

To verify these hypotheses and to select the formulations suitable for MG loading,
vesicle size stability was investigated, measuring Z Average mean diameters by PCS during
the 3 months after preparation. As shown in Figure 1, the vesicle mean diameter was
almost stable in the case of E, TE5, and TE8, while an increase of mean diameters was
particularly appreciable in the case of TE2 and TE6, possibly due to vesicle fusion and
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aggregation under storage. In this regard, some authors described a high tendency of
vesicles stabilized by SP to aggregate, in reason of strong cohesive forces between the
hydrophobic vesicles [45].
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Based on the obtained stability data and considering that smaller vesicles have a
higher chance to penetrate through the skin than larger ones, E, TE5, and TE8 were selected
because they are characterized by higher dimensional stability and smaller mean diameters.

3.2. Preparation and Characterization of Ethosomes and Transethosomes Loaded with MG

E-MG, TE5-MG, and TE8-MG were easily prepared by solubilizing MG in the PC
ethanol solution before water addition, resulting in homogeneous milky or translucent
dispersions, like the corresponding unloaded ones (Supplementary Figure S1). As reported
in Table 3, MG slightly affected Z average mean diameter and zeta potential, compared
to vesicles produced in the absence of the drug. To evaluate the entrapment capacity of
MG in E-MG, TE5-MG, and TE8-MG, the lipid phase was separated from the aqueous
one by ultracentrifugation, and dissolved with dimethyl sulfoxide to promote vesicle
disaggregation and MG solubilization. The quantification of MG in both phases confirmed
the total recovery of the drug in the dispersion, suggesting that the production modalities
avoided MG loss on mechanical devices and preserved the drug from possible thermal or
light degradation. It is noteworthy that MG solubility in both E and TE reached 1 mg/mL,
thereby 10-fold higher with respect to its solubility in water (Table 1). As expected, MG
was mostly associated with the lipid phase, especially in the case of E-MG, as reported in
Table 4. Nonetheless, MG was partly found in the aqueous phase (32%, 37%, and 43% for
E-MG, TE5-MG, and TE8-MG, respectively). The different EC of MG should be ascribed
to its possible localization in the bilayer at the polar–nonpolar interface. Since surfactant
molecules are probably intercalated into the bilayer, they could alter the packing density
of the bilayers and the permeability of the vesicle to the entrapped compounds, finally
affecting the entrapment capacity [46].
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Table 4. Entrapment capacity, DPPH radical-scavenging capacity, and diffusion coefficients of
MG-loaded in the indicated formulations.

Formulation EC a (%) DPPH
IC50 (µg/mL) F b (mg/cm2 × h × 103) D c (cm/h × 103)

Sol-MG d - - 67.70 ± 5.51 96.71 ± 7.87
E-MG 68 ± 3 20.305 ± 1.89 42.03 ± 2.41 42.03 ± 2.41

TE 5-MG 63 ± 2 18.407 ± 1.16 52.33 ± 3.81 52.33 ± 3.81
TE 8-MG 57 ± 1 25.465 ± 0.98 - -

MG e - 17.180 ± 0.53 - -
a: Entrapment capacity; b: Diffusion coefficient; c: Flux; d: MG (0.7 mg/mL) in ethanol/water 30:70 (v/v); e: MG
(1 mg/mL) in dimethyl sulfoxide/ethanol 20:80 (v/v); Data are the mean of 6 independent Franz cell experiments.

In order to compare MG antioxidant capacity, the DPPH free radical scavenging
activity of E-MG, TE5MG, TE8-MG, and MG solution was evaluated. The IC50 values,
reported in Table 4, suggest that the antioxidant activity was better retained in the case of
TE5-MG and E-MG, while TE8-MG displayed the lowest antioxidant activity.

3.3. Cytotoxicity Evaluation

To select a suitable carrier for MG based on biocompatibility, the in vitro cytotoxicity
of E, TE5, and TE8, produced in the absence and presence of MG, was assessed by MTT
in HaCaT cells, at the concentrations of E and TE ranging from 5 to 50 µM (referring to
loaded MG). From the obtained results, depicted in Figure 2, E and TE5 showed more
than 60% cell viability up to the highest concentration (50 µM). Moreover, it should be
underlined that the presence of MG did not affect the toxicity of the vehicle, because no
significant differences were detected between empty and loaded formulations. However,
major toxicity has been found in the case of TE8. At all concentrations tested, both the
vehicles and the loaded formulations caused almost complete cell death, revealing the toxic
effect of DDAB on cells.
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The cytotoxicity of DDAB could be ascribed to the cationic surfactant capability of
solubilizing lipid membranes, changing their barrier capacity, and finally leading to cell
lysis [47,48]. Based on IC50 values and cytotoxicity data, TE8 and TE8-MG were not
considered for further experiments, while the 10 µM concentration of MG was selected
for the evaluation of the antioxidant and anti-inflammatory potential of E-MG, TE5-MG,
and Sol-MG.

3.4. Morphological Characterization

Figure 3 reports representative images of E-MG and TE5-MG samples, visualized
by cryo-TEM, to gain insight into their morphologies. In both cases, spherical and ovoid
multilamellar vesicles are detectable. Notably, in the case of the E-MG image, the contrast
difference between the vesicles and the aqueous phase is higher (Figure 3a) compared to
TE5-MG (Figure 3b) where the vesicles are close together. The multilamellar organization,
typical of ethosome vesicles, is due to the packing organization of PC in the presence
of water, forming hydrophobic double layers associated with the PC chains, delimiting
hydrophilic domains, associated with the polar heads of PC, inside and outside the vesicles.
In the case of TE5-MG, TW80 is thought to alter the vesicle bilayer, positioning it with the
head group oriented towards the head group of PC and the oleic chain aligned parallel to
the PC acyl chains [49].
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3.5. MG Diffusion Kinetics

In order to study MG diffusion kinetics from E-MG and TE5-MG, an in vitro system
based on Franz cells associated with synthetic membranes was employed. Even though syn-
thetic membranes are less predictable with respect to natural ones, their use is preferable for
ethical reasons and indicated in formulative studies to gain information about the structural
parameters affecting drug diffusion through the dosage form [29]. It should be considered
that the supramolecular structure of the vehicle directly influences drug diffusion. In addi-
tion, since the diffusion results are strongly affected by experimental parameters, such as
the employed membrane and the receiving phase, the choice of in vitro conditions is crucial
to obtain reproducible and reliable diffusion information [50]. Therefore, a preliminary
screening was performed to select the type of membrane and receiving phase, evaluating
the diffusion of MG in ethanol solution (Sol-MG, 0.7 mg/mL). Particularly, nylon, MCE,
and PTFE membranes (pore size 0.2 µm) were employed using ethanol/water 50:50, v/v as
receiving phase (Figure 4a). The nylon membrane was selected because it could achieve the
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fastest MG diffusion, followed by MCE and PTFE; indeed, the membrane employed in the
Franz cell test should not act as rate-limiting for drug diffusion [50]. As a second parameter,
the type of receiving phase was evaluated, alternatively employing water, ethanol/water
50:50, v/v, or ethanol/water 30:70, v/v (Figure 4b). As expected due to MG solubility, the
higher the ethanol percentage in the receiving phase, the faster the MG diffusion. Thus,
ethanol/water 50:50, v/v was selected, because it is more suitable for assuring the sink
condition for MG diffusion [34].
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MG diffusion trend was Sol-MG > TE5-MG > E-MG. F values, corresponding to the
slopes of the diffusion profiles, and D values, calculated dividing F by MG concentration
(mg/mL) in the different forms, are reported in Table 4. Both E-MG and TE5-MG controlled
MG diffusion with respect to the simple Sol-MG. Particularly, MG diffusion from TE5-MG
was 1.84-fold slower compared to Sol-MG and 1.24-fold faster compared to E-MG. The
differences in diffusion found in the case of TE5-MG compared to E-MG could be attributed
to the alteration of the packing density of PC bilayers due to TW80 positioning, leading
to a higher vesicle permeability and resulting in faster diffusion of the entrapped MG. To
investigate the biological behavior of E-MG and TE5-MG towards cutaneous inflammation,
in vitro experiments were conducted.

3.6. Antioxidant and Anti-Inflammatory Effects of MG on HaCaT Cells Exposed to CS

The correlation between oxidative stress and inflammation in the skin induced by
pollutants has been extensively described in the literature [51–53]. Pollutants can initiate ox-
idative and inflammatory reactions within the cutaneous tissue, where an ox-inflammatory
status further induces cutaneous damage [54,55]. To test the protective effect of MG against
the cutaneous ox-inflammatory challenges, HaCaT cells were treated with E-MG, TE5-MG,
and Sol-MG (MG 10 µM) and then exposed to CS, while untreated cells exposed to CS were
taken as the control. Hence, HO-1, a key enzyme involved in cellular oxidative defense, and
IL-6, a pro-inflammatory cytokine, were investigated as markers of the oxidative and in-
flammatory responses, by assessing RT-PCR analyses. As expected, in the case of untreated
HaCat cells, the exposure to CS induced a significant increase of HO-1 and IL-6 transcript
levels, with respect to untreated cells exposed to filtered air (Supplementary Figure S2). In
the case of treated cells, CS was able to induce strong mRNA expression levels of HO-1, 2 h
post-exposure, as depicted in Figure 6a. Indeed, pre-treatment with MG formulations sig-
nificantly prevented CS-induced HO-1 expression in HaCaT cells with respect to untreated
cells exposed to CS (CTRL). Notably, this effect was even more pronounced when MG was
delivered by both nanosystems with respect to Sol-MG, and particularly evident in the case
of TE5-MG. In addition, empty nanosystems, E and TE5, also seemed to exert a protective
effect, which can be ascribed to their composition being rich in PC [30]. Indeed, many
phospholipids present within the skin have been demonstrated to be target molecules for
pollutants, including CS, leading to lipid peroxidation [52,53]. In this context PC externally
applied by nanosystems could represent a target for CS, therefore, acting as a protective
barrier, or a “sacrificing agent” to the oxidative damage that normally occurs in cells upon
pollutants exposure. Notably, the higher protective effect found in the case of TE5 with
respect to E could be ascribed to an inhibitory activity on ROS production as previously
described for TW80 [56]. In this respect, TE5 could exert a certain onward antioxidant
effect due to the presence of TW80. Furthermore, E-MG and TE5-MG treatments were able
to inhibit the inflammatory response triggered by CS in HaCaT cells, 6 h after exposure,
as highlighted by the significant lower mRNA expression levels of the pro-inflammatory
cytokine IL-6 (Figure 6b) with respect to untreated cells exposed to CS.

Remarkably, Sol-MG did not exhibit any protective effect against the CS-induced
inflammatory insult, confirming that E-MG and TE5-MG are more effective in preventing
skin damage, especially in the context of the inflammatory response. Particularly, the
protective effect was more evident in the case of TE5-MG with respect to E-MG. The
differences in antioxidant and anti-inflammatory effects of E and TE5 could be attributed
to a more rapid disaggregation of TE5, due to the presence of TW80 intercalating within the
PC bilayer. Nonetheless, further studies are required to better understand the kinetics of
vesicle disaggregation and MG release within cells.
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Moreover, considering that IL-6 is under the transcriptional regulation of NF-kB [57–59],
immunofluorescence staining was performed to assess the level of NF-kB in HaCaT pre-
treated with MG and exposed to CS. In particular, HaCaT cells were treated with E, TE5,
E-MG, and TE5-MG, comparing the efficacy of entrapped MG to that of Sol-MG, quantified
with respect to untreated cells (CTRL). As shown in Figure 7a, CS exposure clearly induced
NF-kB levels in CTRL cells, as evidenced by the green fluorescence staining. In parallel with
the IL-6 data, the treatment with E-MG and TE5-MG reduced NF-kB expression by circa 60%
in HaCaT (Figure 7b).

Noticeably, the comparison of these data with that of cells treated with Sol-MG,
demonstrated that E-MG and TE5-MG exert a stronger anti-inflammatory effect, as depicted
by the reduction in green fluorescence intensity. These results corroborate the suitability
of E-MG and TE5-MG as antioxidant and anti-inflammatory topical treatments of skin
diseases induced by pollutant stressors such as CS.

3.7. E and ET Uptake in Keratinocytes Detected by TEM

TEM analysis, performed to shed light on vesicle interaction with cells, confirmed the
uptake of E and TE5 within keratinocytes, and, at different magnifications, the presence of
E (Figure 8a,b) and TE5 (Figure 8c,d) is clearly evident. The morphology of the vesicles
is comparable to the cryo-TEM images shown in Figure 2, characterized by an external
PC layer and an inner core. The ultrastructural features of cell organelles were not altered
by the presence of E and TE5, according to MTT data demonstrating good cell viability.
These findings corroborate previous studies conducted by many authors, indicating that E
and TE vesicles can enter through the cellular membrane, releasing the loaded molecule
within cells [11,60–63]. Moreover, these results clearly demonstrated that both E and
TE5 are able to penetrate the cells maintaining their own structure, thus, supporting our
starting hypothesis.
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arbitrary units ± SD. * p < 0.05 vs. CTRL sample by ANOVA.



Antioxidants 2021, 10, 768 16 of 19

Antioxidants 2021, 10, x FOR PEER REVIEW 16 of 20 
 

Noticeably, the comparison of these data with that of cells treated with Sol-MG, 
demonstrated that E-MG and TE5-MG exert a stronger anti-inflammatory effect, as de-
picted by the reduction in green fluorescence intensity. These results corroborate the suit-
ability of E-MG and TE5-MG as antioxidant and anti-inflammatory topical treatments of 
skin diseases induced by pollutant stressors such as CS. 

3.7. E and ET Uptake in Keratinocytes Detected by TEM 
TEM analysis, performed to shed light on vesicle interaction with cells, confirmed 

the uptake of E and TE5 within keratinocytes, and, at different magnifications, the pres-
ence of E (Figure 8a,b) and TE5 (Figure 8c,d) is clearly evident. The morphology of the 
vesicles is comparable to the cryo-TEM images shown in Figure 2, characterized by an 
external PC layer and an inner core. The ultrastructural features of cell organelles were 
not altered by the presence of E and TE5, according to MTT data demonstrating good cell 
viability. These findings corroborate previous studies conducted by many authors, indi-
cating that E and TE vesicles can enter through the cellular membrane, releasing the 
loaded molecule within cells [11,60–63]. Moreover, these results clearly demonstrated that 
both E and TE5 are able to penetrate the cells maintaining their own structure, thus, sup-
porting our starting hypothesis. 

 
Figure 8. TEM micrographs of keratinocytes treated with E (a), high magnification detail in (b) and TE5 (c), high magnifi-
cation detail in (d). E (arrows) and TE5 (arrowheads) are clearly recognizable in the cytoplasm; note the darker edge likely 
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4. Conclusions

The present investigation demonstrated the suitability of E and TE for MG solubiliza-
tion and delivery. This preformulatory study has pointed out the influence of E and TE
composition on zeta potential, vesicle size distribution, and stability. Strikingly, the results
of RT-PCR and immunofluorescence demonstrated that E and TE5 can deliver MG to the
target cell, enhancing the keratinocyte antioxidant defense status, while protecting from the
cutaneous ox-inflammatory damage induced by CS. These data have been corroborated by
TEM analyses, showing the presence of intact vesicles within keratinocytes. Nevertheless,
further in vivo studies are required to better elucidate the kinetics of vesicle disaggregation
within the cells and the different mechanisms of interaction of E and TE5 with the skin.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antiox10050768/s1, Figure S1: Representative images of unloaded (a) and MG loaded (b)
ethosomes and transethosomes; Figure S2: Transcript levels of HO-1 (a) and IL-6 (b) on HaCat cells
exposed to air (Air) or to CS for 30 min. HO-1 and IL-6 were measured using qRT-PCR respectively
2 and 6 h post-exposure. Data are the results of the averages of at least three different experiments
± s.d. * p < 0.05 vs. CTRL sample by ANOVA.

https://www.mdpi.com/article/10.3390/antiox10050768/s1
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