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Abstract: Ellagic acid (EA) is a potent antioxidant substance of natural origin characterized by poor
biopharmaceutical properties and low solubility in water that limit its use. The aim of the present
study was to develop lipid-based nanoparticle formulations able to encapsulate EA for dermal
delivery. The EA-loaded nanoparticles were prepared using two different lipid compositions, namely
tristearin/tricaprylin (NLC-EA1) and tristearin/labrasol (NLC-EA2). The influence of formulations on
size, entrapment efficiency, and stability of EA-loaded nanoparticles was investigated. Cryo-TEM and
small-angle X-ray scattering (SAXS) analyses showed that no morphological differences are evident
among all the types of loaded and unloaded nanostructured lipid carriers (NLCs). The macroscopic
aspect of both NLC-EA1 and NLC-EA2 did not change with time. No difference in size was
appreciable between empty and drug-containing NLC, thus the nanoparticle diameter was not
affected by the presence of EA and in general no variations of the diameters occurred during this time.
The entrapment efficiency of both EA-loaded nanoparticles was almost quantitative. In addition,
NLC-EA1 maintained EA stability for almost two months, while NLC-EA2 up to 40 days. FRAP (Ferric
reducing ability of plasma) assay showed an antioxidant activity around 60% for both the loaded
NLC, as compared to the solution. Although both types of NLC are characterized by some toxicity on
HaCaT cells, NLC-EA1 are less cytotoxic than NLC-EA2. Taken together these results demonstrated
that the inclusion of EA within NLC could improve the water solubility, allowing for a reduction of
the dosage. Moreover, both types of NLC-EA maintained a high antioxidant effect and low toxicity.

Keywords: nanostructured lipid carriers (NLCs); lipid-based nanosystems; phytopharmaceutics;
ellagic acid; antioxidant activity

1. Introduction

Phytopharmaceuticals are pharmaceuticals derived from botanicals. Ellagic acid (EA) is
a phytopharmaceutical substance found in many fruits and plants such as raspberries, strawberries,
pomegranates, blackberries, and many other plant foods. EA (2,3,7,8-tetrahydroxy-chromeno
[5,4,3-cde]chromene-5,10-dione) (Table 1) is the dimeric derivative of gallic acid and has a significant
attractiveness in food supplements because of its potentially beneficial effects against a wide
range of diseases [1]. Various studies indicate that EA possesses antimutagenic, antiagenic,
antioxidant, and anti-inflammatory activity in bacterial and mammalian systems [2–4]. In addition,
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EA has proven to be an efficient skin whitener and suppressor of pigmentation. In addition to
its anti-oxidant activities, EA also is cytotoxic towards different types of cancer cells, such as
osteogenic sarcoma, tongue, pancreatic, leukemic, neuroblastoma, breast, prostate gland, and colon
cells [5–11], and possesses anti-inflammatory, anti-bacterial, anti-angiogenesis, anti-atherosclerosis,
anti-hyperglycemic, antihypertensive, and cardioprotective effects [1,12–14]

Table 1. Chemical structure and some physicochemical characteristics of ellagic acid (EA).

Chemical Structure Molecular Weight λmax (nm) Log P Melting Point (◦C)
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particular, topical administration of active compounds loaded onto SLNs or NLCs could prevent 
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with the stratum corneum, facilitating drug skin penetration. 

On the other hand, common disadvantages of SLN include particle aggregation, particle growth, 
unexpected dynamics of polymorphic transition, burst drug release, and low incorporation 
capacities. Concerning this last drawback, it can be underlined that triglycerides are known to 
crystallize mainly in three polymorphic forms which transform monotrophically from α, via β′, to β 
[22]. During storage, SLN triglycerides are subjected to a shift into low energy and more ordered β 
modification, which cause a reduction of imperfections in the crystal lattice and consequently, drug 
expulsion. When SLNs are formulated with mono acid glyceride, such as tristearin, the drug loading 
is limited, and drug expulsion occurs within short times.  

Instead, NLCs are composed of a solid lipid matrix with a certain content of a liquid lipid phase 
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However, EA has found limited use in therapeutic applications due to its low water solubility
(around 9.7 µg/mL) and permeability (class IV of the Biopharmaceutics Classification System) [15,16].
When orally administered EA is poorly absorbed due to low aqueous solubility, metabolism
in the gastrointestinal tract [17], first pass effect and irreversible binding to cellular DNA and
proteins problems.

Incorporation of drugs in lipid nanoparticles is a smart approach to overcome bioavailability [18].
Among lipid-based colloids, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs)
can be mentioned. SLNs are generally produced using solid lipids stabilized by the presence of
surfactants dispersed in the aqueous phase. As a drawback, during lipid crystallization of the solid
lipid core of these particles may lead to leakage of the included active compound, thus influencing the
encapsulation efficiency. NLCs were developed to overcome these drawbacks by mean of a partial
replacement of the solid lipid with a fluid lipid. In this way the lipid core matrix becomes less ordered
as compared to SLNs and can accommodate high amounts of active compound reducing loss problems.

The main advantages of both SLNs and NLCs are their ability to incorporate active compounds,
improve stability and bioavailability of the entrapped molecules, possibly control release and targeting
together with safety, low cost of production, and easy scaling-up. Due to their great versatility,
biodegradability, biocompatibility, and targeting, the lipid-based nanoparticles have been used for
several administration routes, such as oral, parenteral, ocular [19], and topical [20,21]. In particular,
topical administration of active compounds loaded onto SLNs or NLCs could prevent their systemic
absorption and hence, side effects. Furthermore, their small size ensures a close contact with the
stratum corneum, facilitating drug skin penetration.

On the other hand, common disadvantages of SLN include particle aggregation, particle growth,
unexpected dynamics of polymorphic transition, burst drug release, and low incorporation capacities.
Concerning this last drawback, it can be underlined that triglycerides are known to crystallize mainly
in three polymorphic forms which transform monotrophically from α, via β′, to β [22]. During storage,
SLN triglycerides are subjected to a shift into low energy and more ordered β modification, which
cause a reduction of imperfections in the crystal lattice and consequently, drug expulsion. When SLNs
are formulated with mono acid glyceride, such as tristearin, the drug loading is limited, and drug
expulsion occurs within short times.

Instead, NLCs are composed of a solid lipid matrix with a certain content of a liquid lipid phase
able to better solubilize drugs as compared to solid lipids. The liquid lipids form droplets within
the solid lipid particles matrix, providing a high incorporation capacity and a control of drug release.
Therefore, NLCs, which are solid but not crystalline, overcome the drawback of drug expulsion. Indeed,
the use of mixtures of solid and liquid lipids allows for the obtaining of nanoparticles that become solid
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after cooling but do not crystallize [23]. In these structures, the oily nano-compartments are surrounded
by a solid matrix and the solid matrix of the lipid nanoparticle contains tiny liquid nano-compartments
of oil; this peculiar lipid organization increases drug solubility, leading to an enhancement of the drug
loading capacity. In addition, analyzing the production methods of SLNs, it was observed that too high
of a concentration of the drug in the molten lipidic phase could lead to an immediate drug expulsion
during the cooling process or to a dilution in the cold water.

For our studies, we analyzed two different blends of solid and liquid lipids. The first one was
based on the use of a mixture of the liquid caprylic/capric triglycerides (Miglyol) and the solid tristearin.
In the second case, a mixture of caprylocaproyl macrogol-8 glyceride (Labrasol) and tristearin was used
to produce NLCs. In the hot state the two lipids form one phase and during the cooling process a phase
separation occurs, leading to inclusion of small oily droplets in the solid matrix. Taking into account
these assumptions, the present paper will describe the preparation, characterization, and preliminary
in vitro studies of EA-containing NLCs for dermatologic purposes.

2. Results and Discussion

2.1. Production and Characterization of NLC-EA Dispersions

The NLC-EA composed as reported in Table 2, were obtained by dispersing the lipid phase in the
aqueous phase under sonication [23] achieving stable and homogenous dispersions. The corresponding
empty NLC, namely e-NLC1 and e-NLC2, were obtained using the same procedure apart for the
addition of EA. As already known, a fluid lipid (i.e., tricaprylin or labrasol) when mixed to solid
lipids allows for the formation of solid particles homogenously embedded with fluid compartments.
However, during the preparation almost 4% by weight of total used lipid phase was lost on the vessel
and less than 1% gave rise to the formation of agglomerates.

Table 2. Composition of the produced nanostructured lipid carriers (NLC)-EA.

NLC-EA1
(% of Total Dispersion’s Weight)

NLC-EA2
(% of Total Dispersion’s Weight)

Tristearin 3.35 4
Miglyol 1.65 -
Labrasol - 1

Aqueous Solution of
Poloxamer 188 (2.5% w/v) 95 95

Ellagic Acid (EA) 0.025 0.025

After production, nanoparticles were characterized in terms of dimensions and morphology.
Dimensions and size distribution of the produced NLCs were determined by mean of photon correlation
spectroscopy (PCS). The analyses were made immediately after preparation and periodically at regular
intervals in order to investigate the stability of nanoparticles by time. Table 3 summarizes the obtained
values of mean diameters and polydispersity.

Analyzing the obtained values, it should be noted that in general no variations of the diameters
occurred during this time. Some differences in size are appreciable between empty and drug-containing
nanoparticles only in the case of NLC1, which shows an increase from 116.5 nm to 195.7 nm in the
presence of EA. However, concerning the polydispersity indexes, empty NLCs showed a reduction
during time while EA-loaded NLCs showed no great variations, indicating that NLCs maintain up to
two months their monomodal dimensional distribution.
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Table 3. Mean diameters of NLCs as determined by photon correlation spectroscopy (PCS).

Day
e-NLC1 e-NLC2 NLC-EA1 NLC-EA2

Z ave (nm)
P.I.

Z ave (nm)
P.I.

Z ave (nm)
P.I.

Z ave (nm)
P.I.

1 116.5 ± 0.6
0.37

188.3 ± 1.2
0.31

195.7 ± 2.1
0.36

189.6 ± 3.9
0.33

20 118.9 ± 5.6
0.40

183.1 ± 6.2
0.31

192.0 ± 0.8
0.52

181.3 ± 5.1
0.29

30 117.2 ± 7.6
0.43

182.0 ± 1.5
0.28

190.4 ± 2.9
0.40

195.8 ± 6.4
0.37

60 118.7 ± 2.3
0.39

176.6 ± 3.2
0.33

189.8 ± 2.3
0.30

189.2 ± 2.6
0.31

s.d. = standard deviation calculated after five determinations on different batches of the same type of dispersion.
P.I.: polydispersity index

Cryo-transmission electron microscopy allows for the study of the morphology of the produced
NLCs. Figure 1 depicts the cryo-TEM images of e-NLC1, e-NLC2, NLC-EA1, and NLC-EA2. It is
evident that no morphological differences are evident among the considered types of NLCs. Notably,
some large and flat particles are detectable together with deformed, elongated, and circular platelet-like
or elliptical shaped nanoparticles depending on their position with respect to the site of observation,
namely from the top to edge-on view or intermediate positions [24,25].
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Figure 1. Cryo-transmission electron microscopy (cryo-TEM) images of e-NLC1 (A), NLC-EA1 (B),
e-NLC2 (C), and NLC-EA2 (D).
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The inner structural features of NLC, NLC-EA1, and NLC-EA2 were investigated by small-angle
X-ray scattering (SAXS). Results are reported in Figure 2 and clearly indicate that NLC-EA1 and
NLC-EA2 nanoparticles are characterized by a lamellar organization of the inner matrix, both in the
presence or absence of EA. Particularly, SAXS profiles show a Bragg peak at Q = 0.143 Å−1, which
corresponds to a lamellar structure with a repeat distance (which measures the sum of the bilayer
thickness and the thickness of the water layer separating two adjacent bilayers) of 43.9 Å. Indeed,
the four preparations are very similar, therefore it can be asserted that neither the different lipid
composition nor the presence of EA modify the structural organization of lipid nanoparticles. Note
that considering the very low solubility of EA in water, data suggests a solubilization of the drug inside
the paraffinic region of the lipid layer.
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Figure 2. Small-angle X-ray scattering (SAXS) profiles of e-NLC1 (full blue line), e-NLC2 (full red
line), NLC-EA1 (dotted blue line), NLC-EA2 (dotted red line). The signal of sole water is indicated
with a black line. The inset shows the SAXS profiles after the subtraction of the water contribution.
Here, the curves are scaled for clarity. The vertical black line indicates the constant position of the
Bragg peaks.

2.2. Efficiency of Drug Encapsulation and Shelf-Life

The amount of drug encapsulated in NLCs with respect to the total amount used for the preparation,
was evaluated by high-performance liquid chromatography (HPLC) using a reversed-phase column as
described in the experimental section. The amount of entrapped EA was determined after centrifugation
by dissolving in a known amount of ethanol the lipid phase, while the amount of free EA was determined
in the filtrated aqueous phase. The content of EA in both fractions was calculated by comparison with
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a standard solution. Particularly, EA content in the produced NLCs was calculated as a function of
time and expressed as a percentage of the total amount used for the preparation.

As reported in Table 4, drug recovery after NLC production was almost quantitative as compared
to the total amount used for the preparation. In the aqueous fraction the amount of EA was always
below the detection limit of the analytical method employed, indicating a high encapsulation efficiency
of loaded NLC. Indeed, the drug encapsulation was 91.50 ± 2.42% in the case of NLC-EA1 and
96.61 ± 3.67 % in the case of NLC-EA2 dispersions.

Table 4. EA content in NLCs as a function of time and shelf-life values.

EA Recovery (%) 1

Time (Days) EA (Ethanol Solution) NLC-EA1 NLC-EA2

1 100.00 ± 1.41 91.50 ± 2.42 96.61 ± 3.67
10 96.58 ± 2.22 91.06 ± 3.91 92.69 ± 0.93
20 84.31 ± 2.81 90.37 ± 2.50 91.15 ± 2.27
30 74.29 ± 2.63 89.66 ± 2.51 90.86 ± 1.85
60 48.24 ± 6.14 87.57 ± 2.40 88.63 ± 3.67

Shelf Life Values

K 0.012325 0.001832 0.002682
t90 (days) 2 8.52 57.30 39.14
t1/2 (days) 3 56.23 378.18 258.33

1: percentage as a function of initial EA content by weight. 2: time at which the drug concentration has lost 10%. 3: time
at which the drug concentration has lost 50%. The results are the average of three independent experiments ± s.d.

Shelf life stability was calculated plotting Log (EA residual content, % with respect to drug content
at time 0) against time, obtaining first order kinetics (data not shown). From the slopes (m) obtained by
linear regression, the time at which the drug concentration lost 10% and 50%, namely shelf life (t90) and
half-life (t1/2) respectively, was calculated and reported in Table 4. All data were statistically significant
(p < 0.0001).

It was found that EA in solution decomposes quickly (t1/2 being 56 days), while NLCs are able to
increase the protection of EA as compared to the solution with different efficiency. Indeed NLC-EA1
maintain 90% of EA stability for almost two months (57 days), whilst for NLC-EA2, t90 is around 40
days. The t1/2 values reach more than one year for NLC-EA1 (378 days) and 8.5 months for NLC-EA2,
increasing the stability of EA 6.72- and 4.59-fold as compared to the solution.

The macroscopic aspect of both NLC-EA1 and NLC-EA2 did not change by time. Notably, no phase
separation phenomena, settling of particles, and aggregate formation were evident after three months
from production.

2.3. In Vitro Experiments

2.3.1. Antioxidant Activity

It is well known that various pathophysiological processes are due to the presence of free radicals,
thus the antioxidant intervention is of pivotal importance. Indeed, the beneficial effects of polyphenols
on human skin are largely described, such as antioxidant, anti-aging, anti-inflammatory and anti-cancer
activities [26–28]. In this view, both EA-containing NLC formulations were subjected to two different
tests to evaluate their antioxidant capacity as compared to the active solution and the empty NLC.
The chosen tests were DPPH (2,2-Diphenyl-1-picrylhydrazyl) and FRAP (Ferric reducing ability
of plasma).

It has to be underlined that in both cases it was impossible to test the activity of empty NLCs
because the addition of their dimethyl sulfoxide (DMSO) solution to the radical or FRAP mixture
gave rise to the formation of a certain opalescence or precipitation, respectively. As for the NLCs
containing EA, the data summarized in Table 5 relate to extremely diluted solutions that did not give



Molecules 2020, 25, 1449 7 of 15

great opalescence or precipitation problems in the test media. However, unlike EA that is perfectly
soluble in the chosen solvent (DMSO), the two NLCs in the same solvent appeared as suspensions.

Table 5. Antioxidant activity of NLC-EA as determined by FRAP and DPPH assays.

Compound *
DPPH FRAP

µmolTE/g a
± SD % of Activity b µmolTE/g a

± SD % of Activity b

EA-solution 25834.90 ± 0.00 100 34052.21 ± 1902.66 100
NLC-EA1 9545.16 ± 0.00 37 19852.21 ± 1419.89 58
NLC-EA2 4786.36 ± 112.17 18 20879.52 ± 1981.78 61

* all the compounds were tested at the same concentration (0.005 mg/mL) a: µmol Trolox equivalents/g b: % of
activity = percentage of antioxidant activity as compared to EA in DMSO solution.

In light of these observations, the antioxidant activity data reported in Table 5 indicate for both
types of NLC-EA a lower activity with respect to EA solution. In particular, regarding the FRAP assay,
the antioxidant activity of both loaded NLCs is around 60% as compared to the solution. This behavior
could be possibly ascribed to a combination of events. Firstly the recovered amount of EA within the
formulation is lower as compared to the solution being comprised between 91%–96% (Table 4) and
the amount of solubilized EA in the reaction environment. More precisely, the EA dispersed within
solid NLCs can be in solid form, therefore it is not readily available in the useful form to express
the antioxidant activity. In other words, there is a lag time in which EA must pass from the solid to
the solubilized form in solution capable of interacting with ferric ions. Thus, these conditions may
affect the actual EA concentrations useful for the determination of antioxidant activity, but in the
meantime they give good results about the potential activities of these formulations. Indeed, the rate
of EA dissolution could possibly influence a lasting antioxidant activity during time. On the other
hand, the values obtained with the DPPH assay are quite far from those expected, certainly due to the
incompatibility of the DMSO solvent with the test methodology [29,30]. The profile emerged from
these tests underlines how the two new formulations preserve the excellent antioxidant capacity of
the active.

2.3.2. EA Diffusion from NLC

To evaluate the release of EA from NLC-EA1 and NLC-EA2 formulations, Franz-cells associated
to nylon membrane were used. Particularly, two different pH values were considered for the
receiving phase constituted of phosphate buffer, namely pH 7.4 and 5.5. Furthermore, to establish
the sink conditions and promote EA solubilization, 30% ethanol by volume was added to the
receiving phase [31,32]. Moreover, it has to be underlined that due to the poor water-solubility of EA,
the comparative EA solution used for diffusion release experiments was made in DMSO.

Figure 3 reports the diffusion release profiles of EA from solution and both types of NLCs.
The amount of EA that penetrated through the membrane per unit area was plotted against time
and the slopes, which represent the steady state fluxes, and were calculated by linear regression.
The calculated regression coefficients squared were higher than 0.96. The slopes were then substituted
into Equation (6) for the determination of normalized fluxes (Jn) and the results of these calculations
are reported in Table 6.

Particularly, in agreement with the scarce water solubility of EA, the Jn values were in general
very low at 0.003 and 0.663. Notwithstanding these results, from the obtained profiles it is evident that
the two NLC systems displayed a similar behavior in controlling EA release. Moreover, as expected,
the influence of the pH on the receiving phase is appreciable. Indeed, as indicated by literature,
pH influences the release, solubility, and permeation of acidic drugs [33–36]. It is interesting to see that
at pH typical of skin surface, which ideally should be slightly acidic being comprised in the acidic
range from pH 4.0 to 7.0 [33], the release of EA is higher as compared to the same formulation tested at
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neutral pH (i.e., pH 7.4) (see Figure 3 and Table 5). This result could be noteworthy for a potential
topical application of NLC-EA onto the skin.Molecules 2020, 25, x FOR PEER REVIEW 9 of 16 
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interesting to see that at pH typical of skin surface, which ideally should be slightly acidic being 
comprised in the acidic range from pH 4.0 to 7.0 [33], the release of EA is higher as compared to the 
same formulation tested at neutral pH (i.e., pH 7.4) (see Figure 3 and Table 5). This result could be 
noteworthy for a potential topical application of NLC-EA onto the skin.  

2.3.3. Cytotoxicity Studies 

Figure 3. In vitro diffusion kinetics of EA from DMSO solution (circles) or NLC-EA1 (squares) and
NLC-EA2 (diamonds) as determined by Franz cells associated to nylon membranes. Experiments were
conducted in phosphate buffer at different pH, namely 7.4 (closed symbols) and 5.5 (open symbols).
Data are the mean of four independent experiments ± s.d.

Table 6. In vitro diffusion coefficients of EA.

Jn (µg/cm2/h) log Jn R2

NLC-EA1 pH 7.4 0.005 −2.30 0.969
NLC-EA2 pH 7.4 0.003 −2.52 0.984

EA-solution pH 7.4 0.112 −0.95 0.990
NLC-EA1 pH 5.5 0.430 −0.36 0.979
NLC-EA2 pH 5.5 0.500 −0.30 0.995

EA-solution pH 5.5 0.663 −0.17 0.999

2.3.3. Cytotoxicity Studies

It is well known that lipid nanocarriers can improve solubilization and stabilization of drug
molecules, thus influencing the pharmacokinetics of drugs in reason of the different distribution after
systemic administration [37]. Moreover, lipids are physiological safe compounds as components of
many natural food sources and therefore present metabolic pathways for their degradation. In addition,
due to the promising results concerning EA diffusion and antioxidant activity, the in vitro activity
of the produced formulation was further investigated. Particularly, cytotoxicity was assessed by the
colorimetric MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) on HaCaT
cells comparing the activity of EA-loaded NLCs to that of EA in DMSO solution. The obtained results
are graphically shown in Figure 4.
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Figure 4. In vitro antiproliferative effect on HaCaT cells of EA in DMSO solution (crossed squares),
e-NLC1 (closed circles), e-NLC2 (closed squares), NLC-EA1 (open circles), and NLC-EA2 (open squares).
Data are the mean of three independent experiments ± s.d. conducted in triplicate. p-values are
always <0.01.

It should be underlined that, although both types of NLCs are characterized by some toxicity,
NLC1 are less cytotoxic than NLC2. Furthermore, the presence of EA does not heavily influence the
cytotoxicity of these formulations. On the other hand, a result that confirms our initial hypothesis is
that both these formulations have a reduced cytotoxicity as compared to that of the DMSO solution,
allowing us to propose them as a possible vehicle for EA.

3. Materials and Methods

3.1. Materials

Ellagic acid was purchased from Sigma-Aldrich. Miglyol 812N (tricaprylin; C8/C10 fatty
acid triglycerides; caprylic/capric triglycerides; 1,2,3-propanetriyl ester caprylic acid; caprylic acid,
1,2,3-propanetriyl ester; glycerol trioctanoate; glyceryl tricaprylate; octanoic acid, 1,2,3propanetriyl
ester) was a gift of Cremer Oleo Division (Witten, Germany). Labrasol® (caprylocaproyl macrogol-8
glyceride; PEG-8 caprylic/capric glycerides) was purchased form Gattefossé (Saint-Priest, France).
Tristearin (Propane-1,2,3-triyltrioctadecanoate; 1,3-Di(octadecanoyloxy)propan-2-yloctadecanoate;
stearic triglyceride; glyceryl stearate), poloxamer 188 (methyl-oxirane polymer, 75:30), and all other
solvents and materials were provided by Merck (Milano, Italy).
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3.2. NLC Preparation

NLCs were prepared by hot homogenization and ultrasonication. Shortly, a lipid mixture
composed as reported in Table 2 constituting the 5% by weight as compared to the total weight of
dispersions, was melted at 70 ◦C. Then poloxamer 188 aqueous solution (2.5% w/w) was added at the
same temperature under 15,000 rpm homogenization for 1 min (Ultra Turrax T25, IKA-Werke GmbH
& Co. KG, Staufen, Germany). Afterwards the obtained emulsion was ultrasonicated (MicrosonTM,
Ultrasonic cell Disruptor) at 7 kHz for 15 min and cooled down to room temperature.

EA-containing NLCs (NLC-EA) were prepared by adding a DMSO solution of the drug to the
molten lipid mixture at 70 ◦C. Afterwards the production protocol proceeded with the addition of the
poloxamer aqueous phase as above described. NLC dispersions were stored at room temperature.

3.3. NLC Characterization

3.3.1. Cryo-Transmission Electron Microscopy (Cryo-TEM)

Samples of 2 µl droplets were vitrified on a lacey carbon filmed copper grid (Science Services,
Munich), by insufflation of the mean of air plasma glow discharge (Solarus 950, Gatan Inc., Munich,
Germany) for 30 s. After removing the liquid by means of blotting paper, the specimen was frozen by
immersion into refrigerated liquid ethane at approximately 90 K in a temperature-controlled freezing
unit (LEICA EM GP, Wetzlar, Germany). The vitrified specimen was transferred to a Zeiss/LEO
EM922 transmission electron microscope for imaging using a cryoholder (CT3500, Gatan Inc., Munich,
Germany). The temperature of the sample was kept around 90 ◦K throughout the examination.
Specimens were examined under doses of about 100–1000 e/nm2 at 200 kV. Images were recorded
digitally by a bottom mounted CCD camera (Ultrascan 1000, Gatan, Pleasanton, CA, USA) and subjected
to image processing using the system Digital Micrograph GMS 1.9 (Gatan, Munich, Germany).

3.3.2. Photon Correlation Spectroscopy (PCS)

Submicron particle size analysis was performed using a Zetasizer Nano S90 (Malvern Instr.,
Malvern, England) equipped with a 5 mW helium neon laser with a wavelength output of 633 nm.
Plastic-ware was cleaned with detergent washing and rinsed twice with milliQ water. Measurements
were made at 25 ◦C at an angle of 90◦. Data were interpreted using the “method of cumulants” [38].

3.3.3. Small Angle X-rays Scattering (SAXS)

Small-angle X-ray scattering (SAXS) data were collected on the bioSAXS beamline B21, at Diamond
Light Source (Harwell, UK).

EA loaded and unloaded NLC1 and NLC2 (6 mg/mL) solutions were transferred into 0.2 mL
tubes in an automated sample changer. The samples were then delivered into a temperature-controlled
quartz capillary and exposed for 1 s, acquiring 30 frames at 20 ◦C. Data were collected using a Pilatus
Dectris 2 M detector with a 3.9 m sample-detector distance and X-ray wavelength λ = 1.0 Å (so that
the explored Q-range extended from 0.003 to 0.35 Å−1, Q being the modulus of the scattering vector,
defined as 4π sin θ/λ, where 2θ is the scattering angle) and corrected for background, detector efficiency,
and sample transmission. The two-dimensional (2D) data were then radially averaged to derive I(Q)
vs. Q curves.

3.4. Drug Content of Dispersions

The total drug content (free plus bonded) of the produced NLC dispersions was determined after
subjecting a sample of NLCs to methanol dilution (1:10 v/v) and a 3 h of stirring, thus destroying the
lipid nanoparticles completely. On the other hand, the encapsulation efficiency (EE) of NLCs was
determined as follows. One hundred microliters aliquot of each batch was loaded in a centrifugal
filter (Microcon centrifugal filter unit YM-10 membrane, NMWCO 10 kDa, Sigma Aldrich, St Louis,
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MO, USA) and centrifuged (Spectrafuge™ 24D Digital Microcentrifuge, Woodbridge, NJ, USA) at 8000
rpm for 20 min. The amount of entrapped EA was determined by dissolving the lipid phase in the
supernatant with a known amount of ethanol (1:10, v/v), while the amount of free EA was determined
in the filtrated aqueous phase. The samples were then filtered through 0.45 µm membrane pore size
and analyzed by HPLC as detailed below. All data were the mean of 6 determinations on different
batches of the same type of dispersion. EE was determined applying the following equation.

EE = amount of EA detected in the lipid phase × 100/total amount of EA employed (1)

HPLC determinations were performed using an HPLC system Series 1200 (Agilent Technologies
Italia, Milan, Italy) equipped with a two-plungers alternative pump (Jasco Corporation, Cremella, Italy)
and an UV-detector at 254 nm. Then, 40µL samples were injected by means of a 7125 Rheodyne injection
valve with a 50 µL loop on a stainless steel Kinetex® C18 reverse-phase column (150 mm × 4.6 mm)
packed with 5 µm particles (Phenomenex Srl, Milan, Italy). Injections were repeated thrice. Elution of
EA was performed with a mobile phase containing methanol (55%), water (45%), and phosphoric acid
(0.1%) flowing at a rate of 0.6 mL/min. In these conditions, EA retention time was 5.9 min.

3.5. Shelf-Life Studies

Shelf-life stability studies were conducted in triplicate by analyzing at predetermined times,
the physical aspect, the drug entrapment, and the size of NLC dispersions up to 2 months
from production.

Particularly, physical stability studies were performed analyzing macroscopic aspect (phase
separation, turbidity, and macroscopic viscosity) under visual inspection; the drug entrapment was
analyzed by HPLC as above described while the size was followed by PCS analyses as above indicated.

Chemical stability was evaluated determining EA content by HPLC analyses (see above),
thus shelf-life values were calculated as described by Pugh [39] and summarized below.

Log (EA residual content, %) was plotted against time allowing the calculation of the slopes (m)
by linear regression. Afterwards, the slopes (m) values were used for the determination of k values
applying Equation (2).

k = m × 2.303 (2)

Shelf life values (the time for 10% loss, t90) and half-life (the time for 50% loss, t1/2) were then
calculated by means of Equations (3) and (4), respectively.

t90 = 0.105/k (3)

t1/2 = 0.693/k (4)

3.6. Antioxidant Activity (DPPH and FRAP)

3.6.1. DPPH (2,2-Diphenyl-1-picrylhydrazyl) Assay

DPPH radical-scavenging assay is widely used to rapidly evaluate antioxidant capacity [40],
and in particular it is ideal for phenolic compounds. This assay measures the hydrogen donation ability
of an antioxidant to convert the stable DPPH free radical into 1,1-diphenyl-2-picrylhydrazyl, which
is accompanied by a colorimetric reaction from deep-violet to light-yellow, which can be evaluated
by measuring the percentage reduction of the absorbance of the solution at 517 nm after the radical
reaction with the products to be tested. The percentage of radical scavenging capacity was calculated
using Equation (5).

DPPH radical − scavenging capacity (%) = [1 − (A1 − A2)/A0] × 100 (5)
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in which A0 is the absorbance of the control (without EA), A1 is the absorbance in the presence of the
EA, and A2 is the absorbance without DPPH. To a methanol solution of DPPH (1.5 mL) 0.750 mL of EA
(solution or NLCs in DMSO) at different concentrations were added. The absorbance at 517 nm was
measured with a UV–Vis spectrophotometer (Jenway 7305 Spectrophotometer, VWR International
Srl, Milan, Italy) according to a described procedure [41]. Results were expressed as µmol Trolox
equivalent/g of compounds.

3.6.2. FRAP Assay

The FRAP method is a quantitative assay for measuring the ferric ion reducing ability of plasma
and is based on the reduction of ferric ions (Fe3+) to ferrous ions (Fe2+) under acidic conditions in the
presence of 2,4,6-tripyridyl-s-triazine (TPTZ) [42]. In the presence of an antioxidant, the Fe3+–TPTZ
complex is reduced to the ferrous form, corresponding to an intense blue coloration that is read to
a fixed wavelength of the absorption maximum (593 nm). The antioxidant activity is given as µmol
Trolox equivalent/g of compounds, as this standard was used to perform the calibration curves.

3.7. In Vitro Diffusion Studies

In vitro diffusion studies were performed using Franz-type diffusion cells supplied by Vetrotecnica
(Padua, Italy) and associated to 0.45 µm pore size nylon membranes (Merck Millipore, Milan, Italy).
Before mounting onto a Franz cell (diameter being 1 cm), nylon membranes were wetted in distilled
water at room temperature for 30 min. The exposed membrane area was 0.78 cm2. The receiving
compartment contained 5 mL of a mixture of ethanol and phosphate buffer 60 mM (30:70, v/v)
alternatively at pH 7.4 or pH 5.5. The solution in the receiving compartment was stirred at 500 rpm
with a magnetic bar and maintained at 32 ± 1 ◦C during the experiments [31,43].

Then, 1 mL of each formulation was placed on the membrane in the donor compartment that
was sealed to avoid evaporation. At predetermined time intervals comprised between 1 and 8 h,
0.15 mL of receiving phase were withdrawn and EA content was evaluated by HPLC as above reported.
Each removed sample volume was replaced with the same amount of fresh receiving phase. The EA
concentrations were determined six times in independent experiments and the mean values ± standard
deviations were calculated. The mean values were then plotted as a function of time. The diffusion
coefficients, computed from the linear portion of the accumulation curve, represent the experimentally
observed fluxes (Jo). Normalized fluxes Jn were then calculated using Equation (6).

Jn = Jo/C (6)

where C is the EA concentration (in mg/mL) of the analyzed formulation.

3.8. In Vitro MTT Test

HaCaT cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) high glucose, (Lonza,
Milan, Italy), supplemented with 10% FBS (fetal bovine serum), 100 U/mL penicillin, 100 µg/mL
streptomycin, and 2 mM l-glutamine. Cells were incubated at 37 ◦C for 24 h in 95% air/5% CO2 until
80% confluence.

The different formulations, namely EA DMSO solution, both types of empty NLCs, NLC-EA1,
and NLC-EA2, were dispersed in cell culture medium and diluted to reach EA concentrations ranging
from 10 to 75 µM. Concerning empty-NLCs, they were added following the same dilution step used
for NLC-EA in order to reach their same content in lipid nanoparticles within the wells.

Seeded cells were exposed to the selected formulations for 24 h, afterwards the treatment was
completely removed and 110 µL of MTT (0.5 mg/mL) were added and incubated for 4 h. To convert
the MTT solution into a violet colored formazan, 100 µL of DMSO were subsequently added and
incubated for 15 min. After shaking, the solution absorbance, proportional to the number of living
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cells, was measured using a spectrophotometer at 590 nm and, after subtracting background at 670 nm,
thus converted into percentage of viability.

3.9. Data Analysis and Statistics

Statistical analysis was performed by the analysis of variance (ANOVA). The level of significance
was taken at p-values < 0.05.

4. Conclusions

The low solubility of EA in aqueous solution involves very difficult administration. To ameliorate
this, significant amounts of surfactants have to be used resulting in important toxicity in vivo. In this
view the possibility to administrate EA using lipid nanoparticles could be very useful and interesting.
It was demonstrated that the inclusion of EA within NLCs could improve the water solubility, allowing
for a reduction of the dosage. Moreover, the maintenance of high antioxidant effect and low toxicity
was evidenced for both types of NLC-EA, even if NLC-EA1 seems better than NLC-EA2.

It can be concluded that NLCs represent good strategies to encapsulate EA, although further
studies aimed at deeply evaluating the absorption/diffusion of EA through the skin have to be carried
out. For instance, in vitro studies should be carried out using natural epidermal stratum corneum
and/or artificial membranes. In particular, in order to avoid the use of animals, a multi-layered
membrane system consisting of a hydrophilic cellulose ester membrane sandwiched between two
lipophilic Silastic® membranes should be used. In this way both the lipophilic–hydrophilic structure
of human skin and the stratum corneum barrier properties can be satisfactorily reproduced, and in the
meantime this system can be useful for simulating the dermal absorption of EA.

Furthermore, due to the awareness that simulations of human pharmacokinetic parameters
and plasma concentration-time curves using in vitro extrapolation in vivo (IVIVE) and physiological
based pharmacokinetics (PBPK) models are currently becoming very important and fundamental
for the discovery and development of pharmacological processes, these models will be taken into
consideration in the future and new experiments will be carried out in order to transpose some of the
results obtained in this preliminary study.
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